skip to main content


This content will become publicly available on October 16, 2024

Title: Link Budgeting and Interference Management for UAV Networks in 5G and Beyond
UAVs have been studied and manufactured to help create wireless communications networks that are more flexible and cost-effective than a typical wireless network. These UAV networks could help bridge the digital divide in rural America by providing wireless communications service to areas where cell companies find it too expensive to build conventional cell towers. To test different aspects of a UAV-based millimeter-wave frequency network, we created a MATLAB simulation. The simulation visualizes a digital twin of a farm in eastern Nebraska where UAVs are tested. The simulation allows for link budgeting and interference management calculations by accommodating changes in transmitter and receiver location, frequency of the network, power of the transmitted signal, weather conditions, and antenna specifications. The simulation is able to calculate critical network values such as signal-to-interference-plus noise ratio (SINR), path loss, atmospheric loss, and antenna gains under dynamically changing conditions.  more » « less
Award ID(s):
2216332 2244116
NSF-PAR ID:
10466979
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
486 to 491
Format(s):
Medium: X
Location:
Washington DC USA
Sponsoring Org:
National Science Foundation
More Like this
  1. To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR) from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to unreliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas, we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formulate an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt (UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-10 specified enhanced inter-cell interference coordination (eICIC) to reduce the interference stemming from the down-tilted antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs. 
    more » « less
  2. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network. 
    more » « less
  3. In this paper, we develop a distributed mechanism for spectrum sharing among a network of unmanned aerial vehicles (UAV) and licensed terrestrial networks. This method can provide a practical solution for situations where the UAV network may need external spectrum when dealing with congested spectrum or need to change its operational frequency due to security threats. Here we study a scenario where the UAV network performs a remote sensing mission. In this model, the UAVs are categorized to two clusters of relaying and sensing UAVs. The relay UAVs provide a relaying service for a licensed network to obtain spectrum access for the rest of UAVs that perform the sensing task. We develop a distributed mechanism in which the UAVs locally decide whether they need to participate in relaying or sensing considering the fact that communications among UAVs may not be feasible or reliable. The UAVs learn the optimal task allocation using a distributed reinforcement learning algorithm. Convergence of the algorithm is discussed and simulation results are presented for different scenarios to verify the convergence. 
    more » « less
  4. null (Ed.)
    To mitigate the long-term spectrum crunch problem, the FCC recently opened up the 6 GHz frequency band for unlicensed use. However, the existing spectrum sharing strategies cannot support the operation of access points in moving vehicles such as cars and UAVs. This is primarily because of the directionality-based spectrum sharing among the incumbent systems in this band and the high mobility of the moving vehicles, which together make it challenging to control the cross-system interference. In this paper we propose SwarmShare, a mobility-resilient spectrum sharing framework for swarm UAV networking in the 6 GHz band. We first present a mathematical formulation of the SwarmShare problem, where the objective is to maximize the spectral efficiency of the UAV network by jointly controlling the flight and transmission power of the UAVs and their association with the ground users, under the interference constraints of the incumbent system. We find that there are no closed-form mathematical models that can be used characterize the statistical behaviors of the aggregate interference from the UAVs to the incumbent system. Then we propose a data-driven three-phase spectrum sharing approach, including Initial Power Enforcement, Offline-dataset Guided Online Power Adaptation, and Reinforcement Learning-based UAV Optimization. We validate the effectiveness of SwarmShare through an extensive simulation campaign. Results indicate that, based on SwarmShare, the aggregate interference from the UAVs to the incumbent system can be effectively controlled below the target level without requiring the real-time cross-system channel state information. The mobility resilience of SwarmShare is also validated in coexisting networks with no precise UAV location information. 
    more » « less
  5. Distributed transmit beamforming (DTBF) can allow a swarm of unmanned aerial vehicles (UAVs) to send a common message to a distant target. DTBF among N nodes can provide N 2 times the received power compared to a single node and can reduce interference by confining the signal in a certain direction. However, DTBF requires time, frequency, and phase synchronization. Here, we focus on the issue of phase incoherence at the distributed transmit nodes from two sources—different local oscillators (LOs) and hovering position movement—and how to counteract their impact at the receiver via local decisions, namely, rotation. To investigate how the UAV body and its rotation can affect phase coherency, we conduct controlled in-field experiments where we control the phase offset at two distributed antennas and measure the received signal level at four antenna positions on a drone for various rotation angles. We show that significant improvements can be achieved at the receiver through rotation. We also show that there exists an optimal combination of UAV rotation angle and antenna position on the drone to mitigate the effects of phase incoherence among the distributed transmitters. Finally, we demonstrate an interesting trade-off where, due to the heterogeneous nature of the UAV body, rotation angles that yield maximum beamforming gains might not result in the best average (or minimum) beamformed signal level across all possible phase errors at the distributed transmitters. 
    more » « less