skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aerial Base Station Positioning and Power Control for Securing Communications: A Deep Q-Network Approach
The unmanned aerial vehicle (UAV) is one of the technological breakthroughs that supports a variety of services, including communications. UAVs can also enhance the security of wireless networks. This paper defines the problem of eavesdropping on the link between the ground user and the UAV, which serves as an aerial base station (ABS). The reinforcement learning algorithms Q-learning and deep Q-network (DQN) are proposed for optimizing the position of the ABS and the transmission power to enhance the data rate of the ground user. This increases the secrecy capacity without the system knowing the location of the eavesdropper. Simulation results show fast convergence and the highest secrecy capacity of the proposed DQN compared to Q-learning and two baseline approaches.  more » « less
Award ID(s):
2120442
PAR ID:
10331757
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE Wireless Communications and Networking Conference (WCNC)
Page Range / eLocation ID:
2470 to 2475
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In urban environments, tall buildings or structures can pose limits on the direct channel link between a base station (BS) and an Internet-of-Thing device (IoTD) for wireless communication. Unmanned aerial vehicles (UAVs) with a mounted reconfigurable intelligent surface (RIS), denoted as UAV-RIS, have been introduced in recent works to enhance the system throughput capacity by acting as a relay node between the BS and the IoTDs in wireless access networks. Uncoordinated UAVs or RIS phase shift elements will make unnecessary adjustments that can significantly impact the signal transmission to IoTDs in the area. The concept of age of information (AoI) is proposed in wireless network research to categorize the freshness of the received update message. To minimize the average sum of AoI (ASoA) in the network, two model-free deep reinforcement learning (DRL) approaches – Off-Policy Deep Q-Network (DQN) and On-Policy Proximal Policy Optimization (PPO) – are developed to solve the problem by jointly optimizing the RIS phase shift, the location of the UAV-RIS, and the IoTD transmission scheduling for large-scale IoT wireless networks. Analysis of loss functions and extensive simulations is performed to compare the stability and convergence performance of the two algorithms. The results reveal the superiority of the On-Policy approach, PPO, over the Off-Policy approach, DQN, in terms of stability, convergence speed, and under diverse environment settings 
    more » « less
  2. Vapor loss and molecular absorption make the transmission distance in sub-Terahertz bands a challenge, especially in mobile statues such as UAVs communication. The molecular absorption element is an essential part of the path loss in THz communication channel modeling that cannot be neglected. Along this direction, we investigated the UAV trajectories in sub-THz band. To maximize the secrecy rate of the UAVs communication, an optimization problem has been proposed to jointly optimize the trajectory and transmit power. To enhance the obtained average secrecy rate, MIMO communication and a cooperative UAV jammer strategy were used in this paper. Also, analysis and simulations results were presented to show the performance of UAV-ground communication at THz communications. Finally, Secrecy Outage Probability was obtained for each UAV trajectories in different flight periods to examine the performance of physical layer security added to the UAVground communication at sub-THz communication. 
    more » « less
  3. This paper defines the problem of optimizing the downlink multi-user multiple input, single output (MU-MISO) sum-rate for ground users served by an aerial reconfigurable intelligent surface (ARIS) that acts as a relay to the terrestrial base station. The deep deterministic policy gradient (DDPG) is proposed to calculate the optimal active beamforming matrix at the base station and the phase shifts of the reflecting elements at the ARIS to maximize the data rate. Simulation results show the superiority of the proposed scheme when compared to deep Q-learning (DQL) and baseline approaches. 
    more » « less
  4. This paper defines the problem of optimizing the downlink multi-user multiple input, single output (MU-MISO) sum-rate for ground users served by an aerial reconfigurable intelligent surface (ARIS) that acts as a relay to the terrestrial base station. The deep deterministic policy gradient (DDPG) is proposed to calculate the optimal active beamforming matrix at the base station and the phase shifts of the reflecting elements at the ARIS to maximize the data rate. Simulation results show the superiority of the proposed scheme when compared to deep Q-learning (DQL) and baseline approaches. 
    more » « less
  5. In this study, we design and analyze a reliability-oriented downlink wireless network assisted by unmanned aerial vehicles (UAVs). This network employs non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes. In the network, ground user equipments (GUEs) request content from a remote base station (BS), and there are no direct connections between the BS and the GUEs. To address this, we employ a UAV with a limited caching capacity to assist the BS in completing the communication. The UAV can either request uncached content from the BS and then serve the GUEs or directly transmit cached content to the GUEs. In this paper, we first introduce the decoding error rate within the FBL regime and explore caching policies for the UAV. Subsequently, we formulate an optimization problem aimed at minimizing the average maximum end-to-end decoding error rate across all GUEs while considering the coding length and maximum UAV transmission power constraints. We propose a two-step alternating optimization scheme embedded within a deep deterministic policy gradient (DDPG) algorithm to jointly determine the UAV trajectory and transmission power allocations, as well as blocklength of downloading phase, and our numerical results show that the combined learning-optimization algorithm efficiently addresses the considered problem. In particular, it is shown that a well-designed UAV trajectory, relaxing the FBL constraint, increasing the cache size, and providing a higher UAV transmission power budget all lead to improved performance. 
    more » « less