skip to main content


This content will become publicly available on August 8, 2024

Title: Evaluating the Impact of Community Oversight for Managing Mobile Privacy and Security
Mobile privacy and security can be a collaborative process where individuals seek advice and help from their trusted communities. To support such collective privacy and security management, we developed a mobile app for Community Oversight of Privacy and Security ("CO-oPS") that allows community members to review one another’s apps installed and permissions granted to provide feedback. We conducted a four-week-long field study with 22 communities (101 participants) of friends, families, or co-workers who installed the CO-oPS app on their phones. Measures of transparency, trust, and awareness of one another’s mobile privacy and security behaviors, along with individual and community participation in mobile privacy and security co-management, increased from pre- to post-study. Interview findings confirmed that the app features supported collective considerations of apps and permissions. However, participants expressed a range of concerns regarding having community members with different levels of technical expertise and knowledge regarding mobile privacy and security that can impact motivation to participate and perform oversight. Our study demonstrates the potential and challenges of community oversight mechanisms to support communities to co-manage mobile privacy and security.  more » « less
Award ID(s):
2326901
NSF-PAR ID:
10467048
Author(s) / Creator(s):
Publisher / Repository:
USENIX
Date Published:
Format(s):
Medium: X
Location:
Anaheim, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Our research aims to highlight and alleviate the complex tensions around online safety, privacy, and smartphone usage in families so that parents and teens can work together to better manage mobile privacy and security-related risks. We developed a mobile application ("app") for Community Oversight of Privacy and Security ("CO-oPS") and had parents and teens assess whether it would be applicable for use with their families. CO-oPS is an Android app that allows a group of users to co-monitor the apps installed on one another's devices and the privacy permissions granted to those apps. We conducted a study with 19 parent-teen (ages 13-17) pairs to understand how they currently managed mobile safety and app privacy within their family and then had them install, use, and evaluate the CO-oPS app. We found that both parents and teens gave little consideration to online safety and privacy before installing new apps or granting privacy permissions. When using CO-oPS, participants liked how the app increased transparency into one another's devices in a way that facilitated communication, but were less inclined to use features for in-app messaging or to hide apps from one another. Key themes related to power imbalances between parents and teens surfaced that made co-management challenging. Parents were more open to collaborative oversight than teens, who felt that it was not their place to monitor their parents, even though both often believed parents lacked the technological expertise to monitor themselves. Our study sheds light on why collaborative practices for managing online safety and privacy within families may be beneficial but also quite difficult to implement in practice. We provide recommendations for overcoming these challenges based on the insights gained from our study. 
    more » « less
  2. The CO-oPS ("Community Oversight for Privacy and Security") app allows trusted community members to review one another’s apps installed and permissions granted to those apps. Community members can provide feedback to one another regarding their privacy behaviors. Users are also allowed to hide some of their mobile apps that they do not like others to see, ensuring their personal privacy. 
    more » « less
  3. We conducted a user study with 19 parent-teen dyads to understand the perceived benefits and drawbacks of using a mobile app that allows them to co-manage mobile privacy, safety, and security within their families. While the primary goal of the study was to understand the use case as it pertained to parents and teens, an emerging finding from our study was that participants found value in extending app use to other family members (siblings, cousins, and grandparents). Participants felt that it would help bring the necessary expertise into their immediate family network and help protect the older adults and children of the family from privacy and security risks. However, participants expressed that co-monitoring by extended family members might cause tensions in their families, creating interpersonal conflicts. To alleviate these concerns, participants suggested more control over the privacy features to facilitate sharing their installed apps with only trusted family members. 
    more » « less
  4. We conducted a user study with 380 Android users, profiling them according to two key privacy behaviors: the number of apps installed, and the Dangerous permissions granted to those apps. We identified four unique privacy profiles: 1) Privacy Balancers (49.74% of participants), 2) Permission Limiters (28.68%), 3) App Limiters (14.74%), and 4) the Privacy Unconcerned (6.84%). App and Permission Limiters were significantly more concerned about perceived surveillance than Privacy Balancers and the Privacy Unconcerned. App Limiters had the lowest number of apps installed on their devices with the lowest intention of using apps and sharing information with them, compared to Permission Limiters who had the highest number of apps installed and reported higher intention to share information with apps. The four profiles reflect the differing privacy management strategies, perceptions, and intentions of Android users that go beyond the binary decision to share or withhold information via mobile apps. 
    more » « less
  5. Kim, JH. ; Singh, M. ; Khan, J. ; Tiwary, U.S. ; Sur, M. ; Singh, D. (Ed.)
    Cyberattacks and malware infestation are issues that surround most operating systems (OS) these days. In smartphones, Android OS is more susceptible to malware infection. Although Android has introduced several mechanisms to avoid cyberattacks, including Google Play Protect, dynamic permissions, and sign-in control notifications, cyberattacks on Android-based phones are prevalent and continuously increasing. Most malware apps use critical permissions to access resources and data to compromise smartphone security. One of the key reasons behind this is the lack of knowledge for the usage of permissions in users. In this paper, we introduce Permission-Educator, a cloud-based service to educate users about the permissions associated with the installed apps in an Android-based smartphone. We developed an Android app as a client that allows users to categorize the installed apps on their smartphones as system or store apps. The user can learn about permissions for a specific app and identify the app as benign or malware through the interaction of the client app with the cloud service. We integrated the service with a web server that facilitates users to upload any Android application package file, i.e. apk, to extract information regarding the Android app and display it to the user. 
    more » « less