skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Graph-Analytic Approach to Dynamic Airspace Configuration
The current National Airspace System (NAS) is reaching capacity due to increased air traffic, and is based on outdated pre-tactical planning. This study proposes a more dynamic airspace configuration (DAC) approach that could increase throughput and accommodate fluctuating traffic, ideal for emergencies. The proposed approach constructs the airspace as a constraints-embedded graph, compresses its dimensions, and applies a spectral clustering-enabled adaptive algorithm to generate collaborative airport groups and evenly distribute workloads among them. Under various traffic conditions, our experiments demonstrate a 50% reduction in workload imbalances. This research could ultimately form the basis for a recommendation system for optimized airspace configuration. Code available at https://github.com/KeFenge2022/GraphDAC.git  more » « less
Award ID(s):
2142514
PAR ID:
10467134
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Cristina Ceballos
Publisher / Repository:
IEEE Computer Society Conference Publishing Services (CPS) http://www.computer.org/cps
Date Published:
ISSN:
2835-5776
ISBN:
979-8-3503-3458-6
Page Range / eLocation ID:
235 - 241
Subject(s) / Keyword(s):
Dynamic Airspace Configuration, Graph Analytic, Singular Value Decomposition, Antoencoder
Format(s):
Medium: X
Location:
Seattle, Washington
Sponsoring Org:
National Science Foundation
More Like this
  1. Unmanned aerial vehicles or drones are widely used or proposed to carry out various tasks in low-altitude airspace. To safely integrate drone traffic into congested airspace, the current concept of operations for drone traffic management will reserve a static traffic volume for the whole planned trajectory, which is safe but inefficient. In this paper, we propose a dynamic traffic volume reservation method for the drone traffic management system based on a multiscale A* algorithm. The planning airspace is represented as a multiresolution grid world, where the resolution will be coarse for the area on the far side. Therefore, each drone only needs to reserve a temporary traffic volume along the finest flight path in its local area, which helps release the airspace back to others. Moreover, the multiscale A* can run nearly in real-time due to a much smaller search space, which enables dynamically rolling planning to consider updated information. To handle the infeasible corner cases of the multiscale algorithm, a hybrid strategy is further developed, which can maintain a similar optimal level to the classic A* algorithm while still running nearly in real-time. The presented numerical results support the advantages of the proposed approach. 
    more » « less
  2. Advanced air mobility (AAM) has introduced a new mode of air transportation that can be integrated, providing services including air taxis, which can quickly transport people and cargo from one place to another. However, urban airspace is already congested with commercial air traffic, so there is a need for an efficient and autonomous airspace management system. Establishing structured air corridors and enabling UAS-to-UAS (U2U) communications are essential to achieve autonomy. Air corridors are designated airspace primarily reserved for AAM traffic, which will streamline the movement of unmanned aircraft systems (UAS). Meanwhile, U2U communications facilitate efficient collision avoidance strategies (CAS). A key aspect of this system is the development of CAS, which requires advanced communication protocols to monitor traffic patterns and detect potential collisions. This paper explores designing and implementing CAS using U2U communications. Use cases for U2U communications include merging, minimum separation, information relay, collaborative sensing, and rerouting. All these use cases demand real-time solutions for managing traffic conflicts involving multiple UAS. The CAS discussed in this paper utilizes U2U communications to mitigate the risk of collisions in the airspace and demonstrates how U2U communications can assist in efficient AAM traffic management through simulations. 
    more » « less
  3. With the advancing development of Advanced Air Mobility (AAM), there is a collaborative effort to increase safety in the airspace. AAM is an advancing field of aviation that aims to contribute to the safe transportation of goods and people using aerial vehicles. When aerial vehicles are operating in high-density locations such as urban areas, it can become crucial to incorporate collision avoidance systems. Currently, there are available pilot advisory systems such as Traffic Collision and Avoidance Systems (TCAS) providing assistance to manned aircraft, although there are currently no collision avoidance systems for autonomous flights. Standards Organizations such as the Institute of Electrical and Electronics Engineers (IEEE), Radio Technical Commission for Aeronautics (RTCA), and General Aviation Manufacturers Association (GAMA) are working to develop cooperative autonomous flights using UAS-to-UAS Communication in structured and unstructured airspaces. This paper presents a new approach for collision avoidance strategies within structured airspace known as “digital traffic lights”. The digital traffic lights are deployed over an area of land, controlling all UAVs that enter a potential collision zone and providing specific directions to mitigate a collision in the airspace. This strategy is proven through the results demonstrated through simulation in a Cesium Environment. With the deployment of the system, collision avoidance can be achieved for autonomous flights in all airspaces. 
    more » « less
  4. Safety and efficiency are primary goals of air traffic management. With the integration of unmanned aerial vehicles (UAVs) into the airspace, UAV traffic management (UTM) has attracted significant interest in the research community to maintain the capacity of three-dimensional (3D) airspace, provide information, and avoid collisions. We propose a new decision-making architecture for UAVs to avoid collision by formulating the problem into a multi-agent game in a 3D airspace. In the proposed game-theoretic approach, the Ego UAV plays a repeated two-player normal-form game, and the payoff functions are designed to capture both the safety and efficiency of feasible actions. An optimal decision in the form of Nash equilibrium (NE) is obtained. Simulation studies are conducted to demonstrate the performance of the proposed game-theoretic collision avoidance approach in several representative multi-UAV scenarios. 
    more » « less
  5. Air traffic control (ATC) is a safety-critical service system that demands constant attention from ground air traffic controllers (ATCos) to maintain daily aviation operations. The workload of the ATCos can have negative effects on operational safety and airspace usage. To avoid overloading and ensure an acceptable workload level for the ATCos, it is important to predict the ATCos’ workload accurately for mitigation actions. In this paper, we first perform a review of research on ATCo workload, mostly from the air traffic perspective. Then, we briefly introduce the setup of the human-in-the-loop (HITL) simulations with retired ATCos, where the air traffic data and workload labels are obtained. The simulations are conducted under three Phoenix approach scenarios while the human ATCos are requested to self-evaluate their workload ratings (i.e., low-1 to high-7). Preliminary data analysis is conducted. Next, we propose a graph-based deep-learning framework with conformal prediction to identify the ATCo workload levels. The number of aircraft under the controller’s control varies both spatially and temporally, resulting in dynamically evolving graphs. The experiment results suggest that (a) besides the traffic density feature, the traffic conflict feature contributes to the workload prediction capabilities (i.e., minimum horizontal/vertical separation distance); (b) directly learning from the spatiotemporal graph layout of airspace with graph neural network can achieve higher prediction accuracy, compare to hand-crafted traffic complexity features; (c) conformal prediction is a valuable tool to further boost model prediction accuracy, resulting a range of predicted workload labels. The code used is available at Link. 
    more » « less