We propose a method for certifying the fairness of the classification result of a widely used supervised learning algorithm, the k-nearest neighbors (KNN), under the assumption that the training data may have historical bias caused by systematic mislabeling of samples from a protected minority group. To the best of our knowledge, this is the first certification method for KNN based on three variants of the fairness definition: individual fairness, ϵ -fairness, and label-flipping fairness. We first define the fairness certification problem for KNN and then propose sound approximations of the complex arithmetic computations used in the state-of-the-art KNN algorithm. This is meant to lift the computation results from the concrete domain to an abstract domain, to reduce the computational cost. We show effectiveness of this abstract interpretation based technique through experimental evaluation on six datasets widely used in the fairness research literature. We also show that the method is accurate enough to obtain fairness certifications for a large number of test inputs, despite the presence of historical bias in the datasets.
more »
« less
Systematic Testing of the Data-Poisoning Robustness of KNN
Data poisoning aims to compromise a machine learning based software component by contaminating its training set to change its prediction results for test inputs. Existing methods for deciding data-poisoning robustness have either poor accuracy or long running time and, more importantly, they can only certify some of the truly-robust cases, but remain inconclusive when certification fails. In other words, they cannot falsify the truly-non-robust cases. To overcome this limitation, we propose a systematic testing based method, which can falsify as well as certify data-poisoning robustness for a widely used supervised-learning technique named k-nearest neighbors (KNN). Our method is faster and more accurate than the baseline enumeration method, due to a novel over-approximate analysis in the abstract domain, to quickly narrow down the search space, and systematic testing in the concrete domain, to find the actual violations. We have evaluated our method on a set of supervised-learning datasets. Our results show that the method significantly outperforms state-of-the-art techniques, and can decide data-poisoning robustness of KNN prediction results for most of the test inputs.
more »
« less
- Award ID(s):
- 2220345
- PAR ID:
- 10467190
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400702211
- Page Range / eLocation ID:
- 1207 to 1218
- Format(s):
- Medium: X
- Location:
- Seattle WA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data poisoning attacks and backdoor attacks aim to corrupt a machine learning classifier via modifying, adding, and/or removing some carefully selected training examples, such that the corrupted classifier makes incorrect predictions as the attacker desires. The key idea of state-of-the-art certified defenses against data poisoning attacks and backdoor attacks is to create a majority vote mechanism to predict the label of a testing example. Moreover, each voter is a base classifier trained on a subset of the training dataset. Classical simple learning algorithms such as k nearest neighbors (kNN) and radius nearest neighbors (rNN) have intrinsic majority vote mechanisms. In this work, we show that the intrinsic majority vote mechanisms in kNN and rNN already provide certified robustness guarantees against data poisoning attacks and backdoor attacks. Moreover, our evaluation results on MNIST and CIFAR10 show that the intrinsic certified robustness guarantees of kNN and rNN outperform those provided by state-of-the-art certified defenses. Our results serve as standard baselines for future certified defenses against data poisoning attacks and backdoor attacks.more » « less
-
Software testing is difficult to automate, especially in programs which have no oracle, or method of determining which output is correct. Metamorphic testing is a solution this problem. Metamorphic testing uses metamorphic relations to define test cases and expected outputs. A large amount of time is needed for a domain expert to determine which metamorphic relations can be used to test a given program. Metamorphic relation prediction removes this need for such an expert. We propose a method using semi-supervised machine learning to detect which metamorphic relations are applicable to a given code base. We compare this semi-supervised model with a supervised model, and show that the addition of unlabeled data improves the classification accuracy of the MR prediction model.more » « less
-
Datasets can be biased due to societal inequities, human biases, under-representation of minorities, etc. Our goal is to certify that models produced by a learning algorithm are pointwise-robust to dataset biases. This is a challenging problem: it entails learning models for a large, or even infinite, number of datasets, ensuring that they all produce the same prediction. We focus on decision-tree learning due to the interpretable nature of the models. Our approach allows programmatically specifying \emph{bias models} across a variety of dimensions (e.g., label-flipping or missing data), composing types of bias, and targeting bias towards a specific group. To certify robustness, we use a novel symbolic technique to evaluate a decision-tree learner on a large, or infinite, number of datasets, certifying that each and every dataset produces the same prediction for a specific test point. We evaluate our approach on datasets that are commonly used in the fairness literature, and demonstrate our approach's viability on a range of bias models.more » « less
-
Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage using any predictive model, under the assumption that the training and test data are i.i.d.. Recently, it has been shown that adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates, as the i.i.d. assumption is violated. To address this issue, a recent work, Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify the robustness of conformal prediction methods to adversarial noise. However, RSCP has two major limitations: (i) its robustness guarantee is flawed when used in practice and (ii) it tends to produce large uncertainty sets. To address these limitations, we first propose a novel framework called RSCP+ to provide provable robustness guarantee in evaluation, which fixes the issues in the original RSCP method. Next, we propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little computation overhead. Experimental results in CIFAR10, CIFAR100, and ImageNet suggest the baseline method only yields trivial predictions including full label set, while our methods could boost the efficiency by up to 4.36×, 5.46×, and 16.9× respectively and provide practical robustness guarantee.more » « less
An official website of the United States government

