Matrices often represent important information in scientific applications and are involved in performing complex calculations. But systematically testing these applications is hard due to the oracle problem. Metamorphic testing is an effective approach to test such applications because it uses metamorphic relations to determine whether test cases have passed or failed. Metamorphic relations are typically identified with the help of a domain expert and is a labor intensive task. In this work we use a graph kernel based machine learning approach to predict metamorphic relations for matrix calculation programs. Previously, this graph kernel based machine learning approach was used to successfully predict metamorphic relations for programs that perform numerical calculations. Results of this study show that this approach can be used to predict metamorphic relations for matrix calculation programs as well. 
                        more » 
                        « less   
                    
                            
                            Using semi-supervised learning for predicting metamorphic relations
                        
                    
    
            Software testing is difficult to automate, especially in programs which have no oracle, or method of determining which output is correct. Metamorphic testing is a solution this problem. Metamorphic testing uses metamorphic relations to define test cases and expected outputs. A large amount of time is needed for a domain expert to determine which metamorphic relations can be used to test a given program. Metamorphic relation prediction removes this need for such an expert. We propose a method using semi-supervised machine learning to detect which metamorphic relations are applicable to a given code base. We compare this semi-supervised model with a supervised model, and show that the addition of unlabeled data improves the classification accuracy of the MR prediction model. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1656877
- PAR ID:
- 10062927
- Date Published:
- Journal Name:
- The 3rd International Workshop on Metamorphic Testing
- Page Range / eLocation ID:
- 14 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the oracle problem and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies.more » « less
- 
            Ensuring the correctness of scientific software is challenging due to the need to represent and model complex phenomenon in a discrete form. Many dynamic approaches for correctness have been developed for numerical overflow or imprecision, which may manifest as program crashes or hangs. Less effort has been spent on functional correctness, where one of the most widely proposed technique is metamorphic testing. Metamorphic testing often requires deep domain expertise to design meaningful relations. In this vision paper we ask if we can utilize the process of abstraction and refinement, a traditionally formal approach, to guide the development of metamorphic relations. We have built an iterative approach we call Model Assisted Refinements. It starts with domain-agnostic relations and a set of input-output relations created via a dynamic analysis. We then use a model checker to identify missing input/output patterns and potential passing and failing relations. We augment our dynamic analysis, and obtain domain expertise to verify and refine our relations. At the end we have a set of domain-specific metamorphic relations and test cases. We demonstrate our approach on a high-performance chemistry library. Within three refinements we discover several domain specific relations, and increase our behavioral coverage.more » « less
- 
            Metamorphic testing is an advanced technique to test programs without a true test oracle such as machine learning applications. Because these programs have no general oracle to identify their correctness, traditional testing techniques such as unit testing may not be helpful for developers to detect potential bugs. This paper presents a novel system, KABU, which can dynamically infer properties of methods' states in programs that describe the characteristics of a method before and after transforming its input. These Metamorphic Properties (MPs) are pivotal to detecting potential bugs in programs without test oracles, but most previous work relies solely on human effort to identify them and only considers MPs between input parameters and output result (return value) of a program or method. This paper also proposes a testing concept, Metamorphic Differential Testing (MDT). By detecting different sets of MPs between different versions for the same method, KABU reports potential bugs for human review. We have performed a preliminary evaluation of KABU by comparing the MPs detected by humans with the MPs detected by KABU. Our preliminary results are promising: KABU can find more MPs than human developers, and MDT is effective at detecting function changes in methods.more » « less
- 
            Metamorphic testing is a well known approach to tackle the oracle problem in software testing. This technique requires the use of source test cases that serve as seeds for the generation of follow-up test cases. Systematic design of test cases is crucial for the test quality. Thus, source test case generation strategy can make a big impact on the fault detection effectiveness of metamorphic testing. Most of the previous studies on metamorphic testing have used either random test data or existing test cases as source test cases. There has been limited research done on systematic source test case generation for metamorphic testing. This paper provides a comprehensive evaluation on the impact of source test case generation techniques on the fault finding effectiveness of metamorphic testing. We evaluated the effectiveness of line coverage, branch coverage, weak mutation and random test generation strategies for source test case generation. The experiments are conducted with 77 methods from 4 open source code repositories. Our results show that by systematically creating source test cases, we can significantly increase the fault finding effectiveness of metamorphic testing. Further, in this paper we introduce a simple metamorphic testing tool called "METtester" that we use to conduct metamorphic testing on these methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    