skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diversity in the duff – what does DNA metabarcoding reveal about leaf-litter arthropods in the Smokies?
Abstract: The highest elevations of the southern Appalachians host a distinct type of forest, and with that comes a distinctive arthropod fauna. The arthropod species living in the leaf litter of the forest floor are particularly diverse, with numerous high elevation endemics. Yet, most of the litter fauna has received little taxonomic attention. We have intensively sampled and thoroughly DNA barcoded these arthropod communities, and have found that each peak tends to host a highly distinctive community, with a third or more of the species endemic to a site. Comparing communities from four peaks in the Smokies to other high elevation sites in the southern Appalachians reveals more than half of the litter arthropod species to be found nowhere else.  more » « less
Award ID(s):
1916263
PAR ID:
10467252
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Great Smoky Mountains National Park/Discover Life in America
Date Published:
Subject(s) / Keyword(s):
https://www.youtube.com/watch?v=whcffOw_PWU
Format(s):
Medium: X
Location:
[online]
Sponsoring Org:
National Science Foundation
More Like this
  1. The fauna of Diplura, the two-pronged bristletails (Hexapoda), of the southern Appalachians has received little focused systematic attention. Existing literature suggests the fauna to comprise around a dozen species. Based on a broader DNA barcode-based survey of high elevation litter arthropods in the region, we suggest the fauna to be much richer, with automated species delimitation methods hypothesising as many as 35 species, most highly restricted to single or closely proximate localities. Such a result should not be very surprising for such small, flightless arthropods, although it remains to be seen if other markers or morphology support such high diversity. The region still remains sparsely sampled for these more cryptic elements of the arthropod fauna and much larger numbers of species undoubtedly remain to be discovered. 
    more » « less
  2. Abstract Developing systematic conservation plans depends on a wealth of information on a region's biodiversity. For ‘dark taxa' such as arthropods, such data are usually very incomplete and in most cases left out from assessments.Sky islands are important and often fragile biodiversity hotspots. Southern Appalachian high‐elevation spruce–fir forests represent a particularly threatened sky‐island ecosystem, hosting numerous endemic and threatened species, but their arthropods remain understudied.Here we use voucher‐based megabarcoding to explore genetic differentiation among leaf‐litter arthropod communities of these highlands, and to examine the extent to which they represent dispersed communities of more or less coherent species, manageable as a distributed unit. We assembled a dataset comprising more than 6000 COI sequences representing diverse arthropod groups to assess species richness and sharing across peaks and ranges. Comparisons were standardised across taxa using automated species delimitation, measuring endemism levels by putative species.Species richness was high, with sites hosting from 86 to 199 litter arthropod species (not including mites or myriapods). Community profiles suggest that around one fourth of these species are unique to single sky islands and more than one third of all species are limited to a particular range. Across major taxa, endemicity was lowest in Araneae, and highest in neglected groups like Isopoda, Pseudoscorpionida, Protura and Diplura.Southern Appalachian sky islands of spruce–fir habitat host significantly distinct leaf‐litter arthropod communities, with high levels of local endemicity. This is the first work to provide such a clear picture of peak and range uniqueness for a taxonomically broad sample. Ensuring the protection of a sizeable fraction of high‐elevation litter species richness will therefore require attention at a relatively fine spatial scale. 
    more » « less
  3. Elevation gradients provide a wealth of habitats for a wide variety of organisms. The southern Appalachian Mountains in eastern United States are known for their high biodiversity and rates of endemism in arthropods, including in high-elevation leaf-litter taxa that are often found nowhere else on earth. Trechus Clairville (Coleoptera: Carabidae) is a genus of litter inhabitants with a near-global distribution and over 50 Appalachian species. These span two subgenera, Trechus s. str. and Microtrechus Jeannel, largely restricted to north and south of the Asheville basin, respectively. Understanding the diversification of these 3–5 mm flightless beetles through geological time can provide insights into how the litter-arthropod community has responded to historical environments, and how they may react to current and future climate change. We identified beetles morphologically and sequenced six genes to reconstruct a phylogeny of the Appalachian Trechus. We confirmed the Asheville Basin as a biogeographical barrier with a split between the north and south occurring towards the end of the Pliocene. Finer scale biogeography, including mountain-range occupancy, was not a reliable indication of relatedness, with group ranges overlapping and many instances of species-, species group-, and subgeneric sympatry. This may be because of the recent divergence between modern species and species groups. Extensive taxonomic revision of the group is required for Trechus to be useful as a bioindicator, but their high population density and speciose nature make them worth additional time and resources. 
    more » « less
  4. Ahmed, Ferdous (Ed.)
    We addressed the hypothesis that intraspecific genetic variation in plant traits from different sites along a distance/elevation gradient would influence the communities they support when grown at a new site. Answers to this hypothesis are important when considering the community consequences of assisted migration under climate change; i.e., if you build it will they come?. We surveyed arthropod communities occurring on the foundation riparian tree species Populus angustifolia along a distance/elevation gradient and in a common garden where trees from along the gradient were planted 20–22 years earlier. Three major patterns were found: 1) In the wild, arthropod community composition changed significantly. Trees at the lower elevation site supported up to 58% greater arthropod abundance and 26% greater species richness than more distant, high elevation trees. 2) Trees grown in a common garden sourced from the same locations along the gradient, supported arthropod communities more similar to their corresponding wild trees, but the similarity declined with transfer distance and elevation. 3) Of five functional traits examined, leaf area, a trait under genetic control that decreases at higher elevations, is correlated with differences in arthropod species richness and abundance. Our results suggest that genetic differences in functional traits are stronger drivers of arthropod community composition than phenotypic plasticity of plant traits due to environmental factors. We also show that variation in leaf area is maintained and has similar effects at the community level while controlling for environment. These results demonstrate how genetically based traits vary across natural gradients and have community-level effects that are maintained, in part, when they are used in assisted migration. Furthermore, optimal transfer distances for plants suffering from climate change may not be the same as optimal transfer distances for their dependent communities. 
    more » « less
  5. The Pseudoscorpiones fauna of North America is diverse, but in regions like the southern Appalachian Mountains, they are still poorly documented with respect to their species diversity, distributions and ecology. Several families have been reported from these mountains and neighbouring areas. Here we analyse barcoding data of 136 specimens collected in leaf litter, most of them from high-elevation coniferous forest. We used ASAP as a species delimitation method to obtain an estimation of the number of species present in the region. For this and based on interspecific genetic distance values previously reported in Pseudoscorpions, we considered three different genetic Kimura two-parameter distance thresholds (3%/5%/8%), to produce more or less conservative estimates. These distance thresholds resulted in 64/47/27 distinct potential species representing the families Chthoniidae (33/22/12 species) and Neobisiidae (31/25/15) and at least six different genera within them. The diversity pattern seems to be affected by the Asheville Depression, a major biogeographic barrier in this area, with a higher diversity to the west of this geographic feature, particularly within the family Neobisiidae. The absence of representatives from other families amongst our studied samples may be explained by differences in their ecological requirements and occupation of different microhabitats. 
    more » « less