Ensuring fairness in anomaly detection models has received much attention recently as many anomaly detection applications involve human beings. However, existing fair anomaly detection approaches mainly focus on association-based fairness notions. In this work, we target counterfactual fairness, which is a prevalent causation-based fairness notion. The goal of counterfactually fair anomaly detection is to ensure that the detection outcome of an individual in the factual world is the same as that in the counterfactual world where the individual had belonged to a different group. To this end, we propose a counterfactually fair anomaly detection (CFAD) framework which consists of two phases, counterfactual data generation and fair anomaly detection. Experimental results on a synthetic dataset and two real datasets show that CFAD can effectively detect anomalies as well as ensure counterfactual fairness. 
                        more » 
                        « less   
                    
                            
                            Popularizing Fairness: Group Fairness and Individual Welfare
                        
                    
    
            Group-fair learning methods typically seek to ensure that some measure of prediction efficacy for (often historically) disadvantaged minority groups is comparable to that for the majority of the population. When a principal seeks to adopt a group-fair approach to replace another, the principal may face opposition from those who feel they may be harmed by the switch, and this, in turn, may deter adoption. We propose that a potential mitigation to this concern is to ensure that a group-fair model is also popular, in the sense that, for a majority of the target population, it yields a preferred distribution over outcomes compared with the conventional model. In this paper, we show that state of the art fair learning approaches are often unpopular in this sense. We propose several efficient algorithms for postprocessing an existing group-fair learning scheme to improve its popularity while retaining fairness. Through extensive experiments, we demonstrate that the proposed postprocessing approaches are highly effective in practice. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10467341
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 37
- Issue:
- 6
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 7485 to 7493
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy.more » « less
- 
            As machine learning (ML) algorithms are used in applications that involve humans, concerns have arisen that these algorithms may be biased against certain social groups. Counterfactual fairness (CF) is a fairness notion proposed in Kusner et al. (2017) that measures the unfairness of ML predictions; it requires that the prediction perceived by an individual in the real world has the same marginal distribution as it would be in a counterfactual world, in which the individual belongs to a different group. Although CF ensures fair ML predictions, it fails to consider the downstream effects of ML predictions on individuals. Since humans are strategic and often adapt their behaviors in response to the ML system, predictions that satisfy CF may not lead to a fair future outcome for the individuals. In this paper, we introduce lookahead counterfactual fairness (LCF), a fairness notion accounting for the downstream effects of ML models which requires the individual future status to be counterfactually fair. We theoretically identify conditions under which LCF can be satisfied and propose an algorithm based on the theorems. We also extend the concept to path-dependent fairness. Experiments on both synthetic and real data validate the proposed methodmore » « less
- 
            Ensuring that technological advancements benefit all groups of people equally is crucial. The first step towards fairness is identifying existing inequalities. The naive comparison of group error rates may lead to wrong conclusions. We introduce a new method to determine whether a speaker verification system is fair toward several population subgroups. We propose to model miss and false alarm probabilities as a function of multiple factors, including the population group effects, e.g., male and female, and a series of confounding variables, e.g., speaker effects, language, nationality, etc. This model can estimate error rates related to a group effect without the influence of confounding effects. We experiment with a synthetic dataset where we control group and confounding effects. Our metric achieves significantly lower false positive and false negative rates w.r.t. baseline. We also experiment with VoxCeleb and NIST SRE21 datasets on different ASV systems and present our conclusions.more » « less
- 
            null (Ed.)Much of the work in the field of group fairness addresses disparities between predefined groups based on protected features such as gender, age, and race, which need to be available at train, and often also at test, time. These approaches are static and retrospective, since algorithms designed to protect groups identified a priori cannot anticipate and protect the needs of different at-risk groups in the future. In this work we analyze the space of solutions for worst-case fairness beyond demographics, and propose Blind Pareto Fairness (BPF), a method that leverages no-regret dynamics to recover a fair minimax classifier that reduces worst-case risk of any potential subgroup of sufficient size, and guarantees that the remaining population receives the best possible level of service. BPF addresses fairness beyond demographics, that is, it does not rely on predefined notions of at-risk groups, neither at train nor at test time. Our experimental results show that the proposed framework improves worst-case risk in multiple standard datasets, while simultaneously providing better levels of service for the remaining population, in comparison to competing methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    