skip to main content


Title: InfoFair: Information-Theoretic Intersectional Fairness
Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy.  more » « less
Award ID(s):
2134079 1939725 1947135
NSF-PAR ID:
10428928
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
1455 to 1464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP.

     
    more » « less
  2. null (Ed.)
    Artificial intelligence nowadays plays an increasingly prominent role in our life since decisions that were once made by humans are now delegated to automated systems. A machine learning algorithm trained based on biased data, however, tends to make unfair predictions. Developing classification algorithms that are fair with respect to protected attributes of the data thus becomes an important problem. Motivated by concerns surrounding the fairness effects of sharing and few-shot machine learning tools, such as the Model Agnostic Meta-Learning [1] framework, we propose a novel fair fast-adapted few-shot meta-learning approach that efficiently mitigates biases during meta train by ensuring controlling the decision boundary covariance that between the protected variable and the signed distance from the feature vectors to the decision boundary. Through extensive experiments on two real-world image benchmarks over three state-of-the-art meta-learning algorithms, we empirically demonstrate that our proposed approach efficiently mitigates biases on model output and generalizes both accuracy and fairness to unseen tasks with a limited amount of training samples. 
    more » « less
  3. Recently, there has been a growing interest in developing machine learning (ML) models that can promote fairness, i.e., eliminating biased predictions towards certain populations (e.g., individuals from a specific demographic group). Most existing works learn such models based on well-designed fairness constraints in optimization. Nevertheless, in many practical ML tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance. This is because existing fairness constraints are designed to restrict the prediction disparity among different sensitive groups, but with few samples, it becomes difficult to accurately measure the disparity, thus rendering ineffective fairness optimization. In this paper, we define the fairness-aware learning task with limited training samples as the fair few-shot learning problem. To deal with this problem, we devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks. To compensate for insufficient training samples, we propose an essential strategy to select and leverage an auxiliary set for each meta-test task. These auxiliary sets contain several labeled training samples that can enhance the model performance regarding fairness in meta-test tasks, thereby allowing for the transfer of learned useful fairness-oriented knowledge to meta-test tasks. Furthermore, we conduct extensive experiments on three real-world datasets to validate the superiority of our framework against the state-of-the-art baselines. 
    more » « less
  4. Fairness-aware machine learning has attracted a surge of attention in many domains, such as online advertising, personalized recommendation, and social media analysis in web applications. Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age. Among many existing fairness notions, counterfactual fairness is a popular notion defined from a causal perspective. It measures the fairness of a predictor by comparing the prediction of each individual in the original world and that in the counterfactual worlds in which the value of the sensitive attribute is modified. A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data. However, in real-world scenarios, the underlying causal model is often unknown, and acquiring such human knowledge could be very difficult. In these scenarios, it is risky to directly trust the causal models obtained from information sources with unknown reliability and even causal discovery methods, as incorrect causal models can consequently bring biases to the predictor and lead to unfair predictions. In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE. Specifically, under certain general assumptions, CLAIRE effectively mitigates the biases from the sensitive attribute with a representation learning framework based on counterfactual data augmentation and an invariant penalty. Experiments conducted on both synthetic and real-world datasets validate the superiority of CLAIRE in both counterfactual fairness and prediction performance. 
    more » « less
  5. Learning fair representations is an essential task to reduce bias in data-oriented decision making. It protects minority subgroups by requiring the learned representations to be independent of sensitive attributes. To achieve independence, the vast majority of the existing work primarily relaxes it to the minimization of the mutual information between sensitive attributes and learned representations. However, direct computation of mutual information is computationally intractable, and various upper bounds currently used either are still intractable or contradict the utility of the learned representations. In this paper, we introduce distance covariance as a new dependence measure into fair representation learning. By observing that sensitive attributes (e.g., gender, race, and age group) are typically categorical, the distance covariance can be converted to a tractable penalty term without contradicting the utility desideratum. Based on the tractable penalty, we propose FairDisCo, a variational method to learn fair representations. Experiments demonstrate that FairDisCo outperforms existing competitors for fair representation learning. 
    more » « less