Learning fair representations is an essential task to reduce bias in data-oriented decision making. It protects minority subgroups by requiring the learned representations to be independent of sensitive attributes. To achieve independence, the vast majority of the existing work primarily relaxes it to the minimization of the mutual information between sensitive attributes and learned representations. However, direct computation of mutual information is computationally intractable, and various upper bounds currently used either are still intractable or contradict the utility of the learned representations. In this paper, we introduce distance covariance as a new dependence measure into fair representation learning. By observing that sensitive attributes (e.g., gender, race, and age group) are typically categorical, the distance covariance can be converted to a tractable penalty term without contradicting the utility desideratum. Based on the tractable penalty, we propose FairDisCo, a variational method to learn fair representations. Experiments demonstrate that FairDisCo outperforms existing competitors for fair representation learning.
more »
« less
InfoFair: Information-Theoretic Intersectional Fairness
Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy.
more »
« less
- PAR ID:
- 10428928
- Date Published:
- Journal Name:
- 2022 IEEE International Conference on Big Data (Big Data)
- Page Range / eLocation ID:
- 1455 to 1464
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP.more » « less
-
The operationalization of algorithmic fairness comes with several practical challenges, not the least of which is the availability or reliability of protected attributes in datasets. In real-world contexts, practical and legal impediments may prevent the collection and use of demographic data, making it difficult to ensure algorithmic fairness. While initial fairness algorithms did not consider these limitations, recent proposals aim to achieve algorithmic fairness in classification by incorporating noisiness in protected attributes or not using protected attributes at all. To the best of our knowledge, this is the first head-to-head study of fair classification algorithms to compare attribute-reliant, noise-tolerant and attribute-unaware algorithms along the dual axes of predictivity and fairness. We evaluated these algorithms via case studies on four real-world datasets and synthetic perturbations. Our study reveals that attribute-unaware and noise-tolerant fair classifiers can potentially achieve similar level of performance as attribute-reliant algorithms, even when protected attributes are noisy. However, implementing them in practice requires careful nuance. Our study provides insights into the practical implications of using fair classification algorithms in scenarios where protected attributes are noisy or partially available.more » « less
-
Fairness-aware machine learning has attracted a surge of attention in many domains, such as online advertising, personalized recommendation, and social media analysis in web applications. Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age. Among many existing fairness notions, counterfactual fairness is a popular notion defined from a causal perspective. It measures the fairness of a predictor by comparing the prediction of each individual in the original world and that in the counterfactual worlds in which the value of the sensitive attribute is modified. A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data. However, in real-world scenarios, the underlying causal model is often unknown, and acquiring such human knowledge could be very difficult. In these scenarios, it is risky to directly trust the causal models obtained from information sources with unknown reliability and even causal discovery methods, as incorrect causal models can consequently bring biases to the predictor and lead to unfair predictions. In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE. Specifically, under certain general assumptions, CLAIRE effectively mitigates the biases from the sensitive attribute with a representation learning framework based on counterfactual data augmentation and an invariant penalty. Experiments conducted on both synthetic and real-world datasets validate the superiority of CLAIRE in both counterfactual fairness and prediction performance.more » « less
-
Learning fair representation in deep learning is essential to mitigate discriminatory outcomes and enhance trustworthiness. However previous research has been commonly established on inappropriate assumptions prone to unrealistic counterfactuals and performance degradation. Although some proposed alternative approaches such as employing correlation-aware causal graphs or proxies for mutual information these methods are less practical and not applicable in general. In this work we propose FAir DisEntanglement with Sensitive relevance (FADES) a novel approach that leverages conditional mutual information from the information theory perspective to address these challenges. We employ sensitive relevant code to direct correlated information between target labels and sensitive attributes by imposing conditional independence allowing better separation of the features of interest in the latent space. Utilizing an intuitive disentangling approach FADES consistently achieves superior performance and fairness both quantitatively and qualitatively with its straightforward structure. Specifically the proposed method outperforms existing works in downstream classification and counterfactual generations on various benchmarks.more » « less