skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Groundwater in Crisis? Addressing Groundwater Challenges in Michigan (USA) as a Template for the Great Lakes
Groundwater historically has been a critical but understudied, underfunded, and underappreciated natural resource, although recent challenges associated with both groundwater quantity and quality have raised its profile. This is particularly true in the Laurentian Great Lakes (LGL) region, where the rich abundance of surface water results in the perception of an unlimited water supply but limited attention on groundwater resources. As a consequence, groundwater management recommendations in the LGL have been severely constrained by our lack of information. To address this information gap, a virtual summit was held in June 2021 that included invited participants from local, state, and federal government entities, universities, non-governmental organizations, and private firms in the region. Both technical (e.g., hydrologists, geologists, ecologists) and policy experts were included, and participants were assigned to an agricultural, urban, or coastal wetland breakout group in advance, based on their expertise. The overall goals of this groundwater summit were fourfold: (1) inventory the key (grand) challenges facing groundwater in Michigan; (2) identify the knowledge gaps and scientific needs, as well as policy recommendations, associated with these challenges; (3) construct a set of conceptual models that elucidate these challenges; and (4) develop a list of (tractable) next steps that can be taken to address these challenges. Absent this type of information, the sustainability of this critical resource is imperiled.  more » « less
Award ID(s):
1735038
PAR ID:
10467360
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Sustainability
Volume:
14
Issue:
5
ISSN:
2071-1050
Page Range / eLocation ID:
3008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Groundwater scarcity poses threats to communities across the globe, and effectively managing those challenges requires designing policy that achieves institutional fit. Collective action is well-suited to match rules with local context, and multiple pathways exist for communities to achieve reductions in groundwater use. To better understand how local conditions influence rule design, we examine two groundwater-reliant communities in the Western US that engaged in collective-action to arrive at distinct groundwater management rules. We consider: what drove stakeholders in Northwestern Kansas (NWKS) and San Luis Valley, Colorado (SLV) to adopt local groundwater policies, and why were different management pathways chosen? Further, why is more heterogeneity observed between local management organizations in SLV as compared to NWKS? To investigate these questions, we employ grounded theory to interpret the rules in reference to local hydro-agro-economic statistics and interviews with stakeholders (n= 19) in each region selected by expert sampling. We find that the additional goals of groundwater rules in SLV, partially driven by key contrasts in the resource system compared to NWKS, and higher resource productivity in SLV, creates both the need for and efficacy of a price-centered policy. Furthermore, variation in the resource systems and associated farm characteristics between subdistricts drives higher heterogeneity in rule design between local management districts in SLV compared to NWKS. More generally, we find the local flexibility afforded through the collective-action process as critical, even if it were to arrive at alternative, non-economic based incentives. 
    more » « less
  2. Abstract Groundwater is by far the largest unfrozen freshwater resource on the planet. It plays a critical role as the bottom of the hydrologic cycle, redistributing water in the subsurface and supporting plants and surface water bodies. However, groundwater has historically been excluded or greatly simplified in global models. In recent years, there has been an international push to develop global scale groundwater modeling and analysis. This progress has provided some critical first steps. Still, much additional work will be needed to achieve a consistent global groundwater framework that interacts seamlessly with observational datasets and other earth system and global circulation models. Here we outline a vision for a global groundwater platform for groundwater monitoring and prediction and identify the key technological and data challenges that are currently limiting progress. Any global platform of this type must be interdisciplinary and cannot be achieved by the groundwater modeling community in isolation. Therefore, we also provide a high‐level overview of the groundwater system, approaches to groundwater modeling and the current state of global groundwater representations, such that readers of all backgrounds can engage in this challenge. 
    more » « less
  3. Abstract Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium‐to‐high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science‐policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change. 
    more » « less
  4. Global groundwater resources are under strain, with cascading effects on producers, food and fibre production systems, communities and ecosystems. Investments in biophysical research have clarified the challenges, catalysed a proliferation of technological solutions and supported incentivizing individual irrigators to adjust practices. However, groundwater management is fundamentally a governance challenge. The reticence to prioritize building governance capacity represents a critical ‘blind spot’ contributing to a low return on investment for research funding with negative consequences for communities moving closer towards resource depletion. In this Perspective, we recommend shifts in research, extension and policy priorities to build polycentric governance capacity and strategic planning tools, and to reorient priorities to sustaining aquifer-dependent communities in lieu of maximizing agricultural production at the scale of individual farm operations. To achieve these outcomes, groundwater governance needs to be not only prioritized but also democratized. 
    more » « less
  5. Effective groundwater management is critical to future environmental, ecological, and social sustainability and requires accurate estimates of groundwater withdrawals. Unfortunately, these estimates are not readily available in most areas due to physical, regulatory, and social challenges. Here, we compare four different approaches for estimating groundwater withdrawals for agricultural irrigation. We apply these methods in a groundwater‐irrigated region in the state of Kansas, USA, where high‐quality groundwater withdrawal data are available for evaluation. The four methods represent a broad spectrum of approaches: (1) the hydrologically‐based Water Table Fluctuation method (WTFM); (2) the demand‐based SALUS crop model; (3) estimates based on satellite‐derived evapotranspiration (ET) data from OpenET; and (4) a landscape hydrology model which integrates hydrologic‐ and demand‐based approaches. The applicability of each approach varies based on data availability, spatial and temporal resolution, and accuracy of predictions. In general, our results indicate that all approaches reasonably estimate groundwater withdrawals in our region, however, the type and amount of data required for accurate estimates and the computational requirements vary among approaches. For example, WTFM requires accurate groundwater levels, specific yield, and recharge data, whereas the SALUS crop model requires adequate information about crop type, land use, and weather. This variability highlights the difficulty in identifying what data, and how much, are necessary for a reasonable groundwater withdrawal estimate, and suggests that data availability should drive the choice of approach. Overall, our findings will help practitioners evaluate the strengths and weaknesses of different approaches and select the appropriate approach for their application. 
    more » « less