skip to main content

Title: Federated Boosted Decision Trees with Differential Privacy
There is great demand for scalable, secure, and efficient privacy-preserving machine learning models that can be trained over distributed data. While deep learning models typically achieve the best results in a centralized non-secure setting, different models can excel when privacy and communication constraints are imposed. Instead, tree-based approaches such as XGBoost have attracted much attention for their high performance and ease of use; in particular, they often achieve state-of-the-art results on tabular data. Consequently, several recent works have focused on translating Gradient Boosted Decision Tree (GBDT) models like XGBoost into federated settings, via cryptographic mechanisms such as Homomorphic Encryption (HE) and Secure Multi-Party Computation (MPC). However, these do not always provide formal privacy guarantees, or consider the full range of hyperparameters and implementation settings. In this work, we implement the GBDT model under Differential Privacy (DP). We propose a general framework that captures and extends existing approaches for differentially private decision trees. Our framework of methods is tailored to the federated setting, and we show that with a careful choice of techniques it is possible to achieve very high utility while maintaining strong levels of privacy.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Date Published:
Page Range / eLocation ID:
2249 to 2263
Medium: X
Los Angeles CA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Matrix factorization (MF) approximates unobserved ratings in a rating matrix, whose rows correspond to users and columns correspond to items to be rated, and has been serving as a fundamental building block in recommendation systems. This paper comprehensively studies the problem of matrix factorization in different federated learning (FL) settings, where a set of parties want to cooperate in training but refuse to share data directly. We first propose a generic algorithmic framework for various settings of federated matrix factorization (FMF) and provide a theoretical convergence guarantee. We then systematically characterize privacy-leakage risks in data collection, training, and publishing stages for three different settings and introduce privacy notions to provide end-to-end privacy protections. The first one is vertical federated learning (VFL), where multiple parties have the ratings from the same set of users but on disjoint sets of items. The second one is horizontal federated learning (HFL), where parties have ratings from different sets of users but on the same set of items. The third setting is local federated learning (LFL), where the ratings of the users are only stored on their local devices. We introduce adapted versions of FMF with the privacy notions guaranteed in the three settings. In particular, a new private learning technique called embedding clipping is introduced and used in all the three settings to ensure differential privacy. For the LFL setting, we combine differential privacy with secure aggregation to protect the communication between user devices and the server with a strength similar to the local differential privacy model, but much better accuracy. We perform experiments to demonstrate the effectiveness of our approaches. 
    more » « less
  2. Abstract While the practicality of secure multi-party computation (MPC) has been extensively analyzed and improved over the past decade, we are hitting the limits of efficiency with the traditional approaches of representing the computed functionalities as generic arithmetic or Boolean circuits. This work follows the design principle of identifying and constructing fast and provably-secure MPC protocols to evaluate useful high-level algebraic abstractions; thus, improving the efficiency of all applications relying on them. We present Polymath, a constant-round secure computation protocol suite for the secure evaluation of (multi-variate) polynomials of scalars and matrices, functionalities essential to numerous data-processing applications. Using precise natural precomputation and high-degree of parallelism prevalent in the modern computing environments, Polymath can make latency of secure polynomial evaluations of scalars and matrices independent of polynomial degree and matrix dimensions. We implement our protocols over the HoneyBadgerMPC library and apply it to two prominent secure computation tasks: privacy-preserving evaluation of decision trees and privacy-preserving evaluation of Markov processes. For the decision tree evaluation problem, we demonstrate the feasibility of evaluating high-depth decision tree models in a general n -party setting. For the Markov process application, we demonstrate that Poly-math can compute large powers of transition matrices with better online time and less communication. 
    more » « less
  3. Vertical Federated Learning (FL) is a new paradigm that enables users with non-overlapping attributes of the same data samples to jointly train a model without directly sharing the raw data. Nevertheless, recent works show that it's still not sufficient to prevent privacy leakage from the training process or the trained model. This paper focuses on studying the privacy-preserving tree boosting algorithms under the vertical FL. The existing solutions based on cryptography involve heavy computation and communication overhead and are vulnerable to inference attacks. Although the solution based on Local Differential Privacy (LDP) addresses the above problems, it leads to the low accuracy of the trained model. This paper explores to improve the accuracy of the widely deployed tree boosting algorithms satisfying differential privacy under vertical FL. Specifically, we introduce a framework called OpBoost. Three order-preserving desensitization algorithms satisfying a variant of LDP called distance-based LDP (dLDP) are designed to desensitize the training data. In particular, we optimize the dLDP definition and study efficient sampling distributions to further improve the accuracy and efficiency of the proposed algorithms. The proposed algorithms provide a trade-off between the privacy of pairs with large distance and the utility of desensitized values. Comprehensive evaluations show that OpBoost has a better performance on prediction accuracy of trained models compared with existing LDP approaches on reasonable settings. Our code is open source. 
    more » « less
  4. The daily activities performed by a disabled or elderly person can be monitored by a smart environment, and the acquired data can be used to learn a predictive model of user behavior. To speed up the learning, several researchers designed collaborative learning systems that use data from multiple users. However, disclosing the daily activities of an elderly or disabled user raises privacy concerns. In this paper, we use state-of-the-art deep neural networkbased techniques to learn predictive human activity models in the local, centralized, and federated learning settings. A novel aspect of our work is that we carefully track the temporal evolution of the data available to the learner and the data shared by the user. In contrast to previous work where users shared all their data with the centralized learner, we consider users that aim to preserve their privacy. Thus, they choose between approaches in order to achieve their goals of predictive accuracy while minimizing the shared data. To help users make decisions before disclosing any data, we use machine learning to predict the degree to which a user would benefit from collaborative learning. We validate our approaches on real-world data 
    more » « less
  5. Recent years have seen the increasing attention and popularity of federated learning (FL), a distributed learning framework for privacy and data security. However, by its fundamental design, federated learning is inherently vulnerable to model poisoning attacks: a malicious client may submit the local updates to influence the weights of the global model. Therefore, detecting malicious clients against model poisoning attacks in federated learning is useful in safety-critical tasks.However, existing methods either fail to analyze potential malicious data or are computationally restrictive. To overcome these weaknesses, we propose a robust federated learning method where the central server learns a supervised anomaly detector using adversarial data generated from a variety of state-of-the-art poisoning attacks. The key idea of this powerful anomaly detector lies in a comprehensive understanding of the benign update through distinguishing it from the diverse malicious ones. The anomaly detector would then be leveraged in the process of federated learning to automate the removal of malicious updates (even from unforeseen attacks).Through extensive experiments, we demonstrate its effectiveness against backdoor attacks, where the attackers inject adversarial triggers such that the global model will make incorrect predictions on the poisoned samples. We have verified that our method can achieve 99.0% detection AUC scores while enjoying longevity as the model converges. Our method has also shown significant advantages over existing robust federated learning methods in all settings. Furthermore, our method can be easily generalized to incorporate newly-developed poisoning attacks, thus accommodating ever-changing adversarial learning environments. 
    more » « less