skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decentralized Asynchronous Crash-resilient Runtime Verification
Runtime verificationis a lightweight method for monitoring the formal specification of a system during its execution. It has recently been shown that a given state predicate can be monitored consistently by a set of crash-prone asynchronousdistributedmonitors observing the system, only if each monitor can emit verdicts taken from alarge enoughfinite set. We revisit this impossibility result in the concrete context of linear-time logic (ltl) semantics for runtime verification, that is, when the correctness of the system is specified by anltlformula on its execution traces. First, we show that monitors synthesized based on the 4-valued semantics ofltl(rv-ltl) may result in inconsistent distributed monitoring, even for some simpleltlformulas. More generally, given anyltlformula φ, we relate the number of different verdicts required by the monitors for consistently monitoring φ, with a specific structural characteristic of φ called itsalternation number. Specifically, we show that, for everyk ≥ 0, there is anltlformula φ with alternation number kthat cannot be verified at runtime by distributed monitors emitting verdicts from a set of cardinality smaller thank+ 1. On the positive side, we define a family of logics, calleddistributedltl(abbreviated asdltl), parameterized byk≥ 0, which refinesrv-ltlby incorporating2k+ 4 truth values. Our main contribution is to show that, for everyk≥ 0, everyltlformula φ with alternation number kcan be consistently monitored by distributed monitors, each running an automaton based on a (2 ⌈k/2 ⌉ +4)-valued logic taken from thedltlfamily.  more » « less
Award ID(s):
2102106
PAR ID:
10467381
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Journal of the ACM
Volume:
69
Issue:
5
ISSN:
0004-5411
Page Range / eLocation ID:
1 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Runtime monitoring is commonly used to detect the violation of desired properties in safety critical cyber-physical systems by observing its executions. Bauer et al. introduced an influential framework for monitoring Linear Temporal Logic (LTL) properties based on a three-valued semantics: the formula is already satisfied by the given prefix, it is already violated, or it is still undetermined, i.e., it can still be satisfied and violated by appropriate extensions. However, a wide range of formulas are not monitorable under this approach, meaning that they have a prefix for which satisfaction and violation will always remain undetermined no matter how it is extended. In particular, Bauer et al. report that 44% of the formulas they consider in their experiments fall into this category. Recently, a robust semantics for LTL was introduced to capture different degrees by which a property can be violated. In this paper we introduce a robust semantics for finite strings and show its potential in monitoring: every formula considered by Bauer et al. is monitorable under our approach. Furthermore, we discuss which properties that come naturally in LTL monitoring — such as the realizability of all truth values — can be transferred to the robust setting. Lastly, we show that LTL formulas with robust semantics can be monitored by deterministic automata and report on a prototype implementation. 
    more » « less
  2. Abstract With the growing use of temporal logics in areas ranging from robot planning to runtime verification, it is critical that users have a clear understanding of what a specification means. Toward this end, we have been developing a catalog of semantic errors and a suite of test instruments targeting various user-groups. The catalog is of interest to educators, to logic designers, to formula authors, and to tool builders, e.g., to identify mistakes. The test instruments are suitable for classroom teaching or self-study. This paper reports on five sets of survey data collected over a three-year span. We study misconceptions about finite-trace$$\textsc {ltl}_{f}$$ L T L f in threeltl-aware audiences, and misconceptions about standardltlin novices. We find several mistakes, even among experts. In addition, the data supports several categories of errors in both$$\textsc {ltl}_{f}$$ L T L f andltlthat have not been identified in prior work. These findings, based on data from actual users, offer insights into whatspecific waystemporal logics are tricky and provide a groundwork for future interventions. 
    more » « less
  3. null (Ed.)
    Robust Linear Temporal Logic (rLTL) was crafted to incorporate the notion of robustness into Linear-time Temporal Logic (LTL) specifications. Technically, robustness was formalized in the logic rLTL via 5 different truth values and it led to an increase in the time complexity of the associated model checking problem. In general, model checking an rLTL formula relies on constructing a generalized Büchi automaton of size 5^|φ| where |φ| denotes the length of an rLTL formula φ. It was recently shown that the size of this automaton can be reduced to 3^|φ| (and even smaller) when the formulas to be model checked come from a fragment of rLTL. In this paper, we introduce Evrostos, the first tool for model checking formulas in this fragment. We also present several empirical studies, based on models and LTL formulas reported in the literature, confirming that rLTL model checking for the aforementioned fragment incurs in a time overhead that makes the verification of rLTL practical. 
    more » « less
  4. We investigate online monitoring algorithms over dense-time and continuous-time signals for properties written in metric temporal logic (MTL). We consider an abstract algebraic semantics based on complete lattices. This semantics includes as special cases the standard Boolean (qualitative) semantics and the widely-used real-valued robustness (quantitative) semantics. Our semantics also extends to truth values that are partially ordered and allows the modeling of uncertainty in satisfaction. We propose a compositional approach for the construction of online monitors that transform exact representations of piecewise constant (dense-time and continuous-time) signals. These monitors are based on a class of infinite-state deterministic signal transducers that (1) are allowed to produce the output signal with some bounded delay relative to the input signal, and (2) do not introduce unbounded variability in the output signal. A key ingredient of our monitoring framework is an efficient algorithm for sliding-window aggregation over dense-time signals. We have implemented and experimentally evaluated our monitoring framework by comparing it to the recently proposed online monitoring tools Reelay and RTAMT. 
    more » « less
  5. We consider the problem of synthesizing good-enough (GE)-strategies for linear temporal logic (LTL) over finite traces or LTLf for short.The problem of synthesizing GE-strategies for an LTL formula φ over infinite traces reduces to the problem of synthesizing winning strategies for the formula (∃Oφ)⇒φ where O is the set of propositions controlled by the system.We first prove that this reduction does not work for LTLf formulas.Then we show how to synthesize GE-strategies for LTLf formulas via the Good-Enough (GE)-synthesis of LTL formulas.Unfortunately, this requires to construct deterministic parity automata on infinite words, which is computationally expensive.We then show how to synthesize GE-strategies for LTLf formulas by a reduction to solving games played on deterministic Büchi automata, based on an easier construction of deterministic automata on finite words.We show empirically that our specialized synthesis algorithm for GE-strategies outperforms the algorithms going through GE-synthesis of LTL formulas by orders of magnitude. 
    more » « less