skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Porous Crystalline Nitrone‐Linked Covalent Organic Framework**
Abstract Herein, we report the synthesis of a nitrone‐linked covalent organic framework, COF‐115, by combiningN,N′,N′,N′′′‐(ethene‐1, 1, 2, 2‐tetrayltetrakis(benzene‐4, 1‐diyl))tetrakis(hydroxylamine) and terephthaladehyde via a polycondensation reaction. The formation of the nitrone functionality was confirmed by solid‐state13C multi cross‐polarization magic angle spinning NMR spectroscopy of the13C‐isotope‐labeled COF‐115 and Fourier‐transform infrared spectroscopy. The permanent porosity of COF‐115 was evaluated through low‐pressure N2, CO2, and H2sorption experiments. Water vapor and carbon dioxide sorption analysis of COF‐115 and the isoreticular imine‐linked COF indicated a superior potential ofN‐oxide‐based porous materials for atmospheric water harvesting and CO2capture applications. Density functional theory calculations provided valuable insights into the difference between the adsorption properties of these COFs. Lastly, photoinduced rearrangement of COF‐115 to the associated amide‐linked material was successfully demonstrated.  more » « less
Award ID(s):
2223442 1124244
PAR ID:
10467481
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
36
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Band 6 and Band 7 observations of 10 Lupus disks around M3-K6 stars from the Atacama Large Millimeter/submillimeter Array survey of Gas Evolution in PROtoplanetary disks (AGE-PRO) Large Program. In addition to continuum emission in both bands, our Band 6 setup covers the12CO,13CO, and C18OJ= 2–1 lines, while our Band 7 setup covers the N2H+J= 3–2 line. All of our sources are detected in12CO and13CO; seven out of ten are detected in C18O; and three are detected in N2H+. We find strong correlations between the CO isotopologue line fluxes and the continuum flux densities. With the exception of one disk, we also identify a strong correlation between the C18OJ= 2–1 and N2H+J= 3–2 fluxes, indicating similar CO abundances across this sample. For the two sources with well-resolved continuum and12COJ= 2–1 images, we find that their gas-to-dust size ratio is consistent with the median value of ∼2 inferred from a larger sample of Lupus disks. We derive dust disk masses from continuum flux densities. We estimate gas disk masses by comparing C18OJ= 2–1 line fluxes with those predicted by the limited grid of self-consistent disk models of M. Ruaud et al. A comparison of these mass estimates with those derived by L. Trapman et al., using a combination of CO isotopologue and N2H+line emission, shows that the masses are consistent with each other. Some discrepancies appear for small and faint disks, but they are still within the uncertainties. Both methods find gas disk masses increase with dust disk masses, and gas-to-dust mass ratios are between 10 and 100 in the AGE-PRO Lupus sample. 
    more » « less
  2. Abstract Molecular observations of four planetary nebulae (PNe), M4-17, Hu 1-1, M1-59, and Na 2, were conducted at 1–3 mm using the Arizona Radio Observatory’s 12 m antenna and Submillimeter Telescope, and the Institut de Radioastronomie Millimétrique 30 m Telescope. Toward M4-17, HNC (J= 3 → 2), CCH (N= 2 → 1,N= 3 → 2), CN (N= 1 → 0,N= 2 → 1), H2CO (JKa,Kc= 21,2→ 11,1,JKa,Kc= 20,2→ 10,1,JKa,Kc= 21,1→ 11,0), CS (J= 3 → 2,J= 5 → 4), and H13CN (J= 2 → 1) were detected. An almost identical set of transitions was identified toward Hu 1-1. Moreover, c–C3H2was detected in Hu 1-1 via three 2 mm lines:JKa,Kc= 31,2→ 22,1,JKa,Kc= 41,4→ 30,3, andJKa,Kc= 32, 2→ 21,1. HNC, CCH, CN, CS, and H13CN were found in M1-59, as well as H2S via itsJKa,Kc= 11,0→ 10,1line—the first detection of this key sulfur species in PNe. In addition, CCH and CN were identified in the 27,000 yr old Na 2. Among these four sources, CN and CCH were the most prevalent molecules (after CO and H2) with fractional abundances, relative to H2, off∼ 0.9–7.5 × 10−7and 0.8–7.5 × 10−7, respectively. CS and HNC have abundances in the rangef∼ 0.5–5 × 10−8, the latter resulting in HCN/HNC ∼ 3 across all three PNe. The unusual species H2CO, c–C3H2, and H2S hadf∼ 3–4 × 10−7, 10−8, and 6 × 10−8. This study suggests that elliptical PNe such as Hu 1-1 can have a diverse molecular composition. The presence of CN, CCH, and HCO+in Na 2, with comparable abundances to younger PNe, demonstrates that molecular content is maintained into the late PN stage. 
    more » « less
  3. Abstract Atacama Large Millimeter/submillimeter Array (ALMA) data toward QSO J1851+0035 (l= 33.°498,b= +0.°194) were used to study absorption lines by Galactic molecular gas. We detected 17 species (CO,13CO, C18O, HCO+, H13CO+, HCO, H2CO, C2H,c-C3H,c-C3H2, CN, HCN, HNC, CS, SO, SiO, and C) and set upper limits to 18 species as reference values for chemical models. About 20 independent velocity components at 4.7–10.9 kpc from the Galactic center were identified. Their column density and excitation temperature estimated from the absorption study, as well as the CO intensity distributions obtained from the FUGIN survey, indicate that the components withτ≲1 correspond to diffuse clouds or cloud outer edges. Simultaneous multiple-Gaussian fitting of COJ= 1–0 andJ= 2–1 absorption lines shows that these are composed of narrow- and broad-line components. The kinetic temperature empirically expected from the high HCN/HNC isomer ratio (≳4) reaches ≳40 K and the corresponding thermal width accounts for the line widths of the narrow-line components. CN-bearing molecules and hydrocarbons have tight and linear correlations within the groups. The CO/HCO+abundance ratio showed a dispersion as large as 3 orders of magnitude with a smaller ratio in a smallerN(HCO+) (or lowerAV) range. Some of the velocity components are detected in single-dish CO emission and ALMA HCO+absorption but without corresponding ALMA CO absorption. This may be explained by the mixture of clumpy CO emitters not resolved with the ∼1 pc single-dish beam surrounded by extended components with a very low CO/HCO+abundance ratio (i.e., CO-poor gas). 
    more » « less
  4. Abstract The rotational barrier about the CN carbamate bond ofN‐(4‐hydroxybutyl)‐N‐(2,2,2‐trifluoroethyl)tert‐butyl carbamate1was determined by variable temperature (VT)13C and19F NMR spectroscopy. The −CH2CF3 appendage reports on rotational isomerism and allows for the observation of separate signals for the E‐ and Z‐ensembles at low temperature. The activation barrier for E/Z‐isomerization was quantified using Eyring‐Polanyi theory which requires the measurements of the maximum difference in Larmor frequency Δνmax and the convergence temperature Tc. Both Δνmax and Tc were interpolated by analyzing sigmoidal functions fitted to data describing signal separation and the quality of the superposition of the E‐ and Z‐signals, respectively. Methods for generating the quality‐of‐fit parameters for Lorentzian line shape analysis are discussed. Our best experimental value for the rotational barrier ΔGc(1)=15.65±0.13 kcal/mol is compared to results of a higher level ab initio study of the modelN‐ethyl‐N‐(2,2,2‐trifluoroethyl) methyl carbamate. 
    more » « less
  5. Abstract The stable isotope ratio of dissolved inorganic carbon (δ13C‐DIC) is a valuable tracer for investigating carbon cycling in aquatic environments. However, its potential remains underutilized due to limited data availability. Fewer than 15% of cruise samples are analyzed forδ13C‐DIC, as isotope analysis using isotope ratio mass spectrometry is labor‐intensive and restricted to onshore laboratories. We present over 3500δ13C‐DIC measurements from the 2023 Global Ocean Ship‐based Hydrographic Investigations Program A16N cruise in the North Atlantic. Notably, three‐quarters of these measurements were conducted onboard using a CO2extraction device coupled with cavity ring‐down spectroscopy, a more efficient and cost‐effective method. This extensive dataset providesδ13C‐DIC values with spatial resolution comparable to other ocean carbonate chemistry and biogeochemical parameters. This dataset supports improved quantification of anthropogenic CO2uptake and storage, and may facilitate the development of algorithms to estimateδ13C‐DIC in under sampled regions. 
    more » « less