skip to main content


Title: Contrasting intra‐annual population dynamics of two codominant species are consistent across spatial and temporal scales
Abstract

Despite asymmetric competition and a wide array of functional similarities, two ecologically important C4perennial grasses,Andropogon gerardiiandSorghastrum nutans, frequently codominate areas of the mesic tallgrass prairie of the US Great Plains. A subtle difference in their vegetative reproduction strategies may play a role in preventing the exclusion ofS. nutans, the presumed weaker competitor in such regions.

WhileA. gerardiivegetative tiller densities peak in the early growing season and decline thereafter (determinate recruitment), those ofS. nutansmay continue to increase throughout the growing season (indeterminate recruitment), providing a potential avenue for recovery from more intensive early season competition. However, until now these patterns have only been informally observed in the field.

We examined the year‐to‐year consistency of growing season vegetative tiller dynamics (measured as seasonal change in tiller densities) of each grass species from an intact tallgrass prairie in Kansas – a site within the core of both species' distributions – over a period of 8 years. Then, to investigate environmental effects on these dynamics, we examined whether they differ across a Kansas landscape varying in topography, fire management regimes, and the abundances of the study species. Finally, we expanded the investigation of environmental effects on growing season tiller dynamics by observing them at the periphery of the species' distributions in central Colorado, where climatic conditions are dryer and the study species' abundances are reduced.

Synthesis. We found that the tiller densities ofA. gerardiidecline within seasons with striking consistency regardless of spatio‐temporal scale or environmental factors (topography and fire regimes). In contrast, we found the seasonal dynamics ofS. nutanstiller densities were dependent on environmental factors, with seasonal tiller density increases occurring only within the Kansas populations but not consistent between years. These observations lay the groundwork for establishing differences in tiller recruitment determinacy as a potentially important yet underappreciated mechanism for promoting coexistence and codominance among perennial plant species.

 
more » « less
Award ID(s):
2025849
NSF-PAR ID:
10467489
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Ecology
Date Published:
Journal Name:
Journal of Ecology
Volume:
111
Issue:
3
ISSN:
0022-0477
Page Range / eLocation ID:
676 to 686
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tallgrass prairie is among the most threatened ecosystems but is often fragmented and surrounded by human‐modified landscapes. Small mammals are integral components of tallgrass prairies. However, little is known about how landscape composition, configuration, and management impact small mammals in tallgrass prairies.

    We conducted a systematic literature review to identify species‐specific and community associations with three broad topics: landscape composition, landscape configuration, and management practices.

    We identified 61 studies that assessed our variables of interest. We categorised the location, species assessed, variables monitored, and results by species and for the community.

    The majority of studies (64%) were conducted in two states, Illinois and Kansas. Deer mice (Peromyscus maniculatus), prairie voles (Microtus ochrogaster), and white‐footed mice (Peromyscus leucopus) showed specific associations with landscape variables, with deer mice preferring bare ground and recently burned plots, and prairie voles preferring thatch and negatively associated with prescribed fire. White‐footed mice were frequently associated with wooded areas.

    Small mammal biodiversity was positively associated with patchy habitats containing greater diversity in vegetative composition and management regime. Management and land composition were both relatively well studied for several species; habitat configuration was understudied.

    We identified significant gaps in our understanding of small mammal landscape ecology in tallgrass prairies. With tallgrass prairie restoration a growing trend in this region, a greater understanding of drivers of small mammal populations will be crucial to successful restoration efforts. Future research should focus on understudied areas and species, and examine how habitat heterogeneity impacts small mammal biodiversity.

     
    more » « less
  2. Mitchell, Patrick (Ed.)
    Abstract In highly disturbed environments, clonality facilitates plant survival via resprouting after disturbance, resource sharing among interconnected stems and vegetative reproduction. These traits likely contribute to the encroachment of deep-rooted clonal shrubs in tallgrass prairie. Clonal shrubs have access to deep soil water and are typically thought of as relatively insensitive to environmental variability. However, how leaf physiological traits differ among stems within individual clonal shrubs (hereafter ‘intra-clonal’) in response to extreme environmental variation (i.e. drought or fire) is unclear. Accounting for intra-clonal differences among stems in response to disturbance is needed to more accurately parameterize models that predict the effects of shrub encroachment on ecosystem processes. We assessed intra-clonal leaf-level physiology of the most dominant encroaching shrub in Kansas tallgrass prairie, Cornus drummondii, in response to precipitation and fire. We compared leaf gas exchange rates from the periphery to centre within shrub clones during a wet (2015) and extremely dry (2018) year. We also compared leaf physiology between recently burned shrubs (resprouts) with unburned shrubs in 2018. Resprouts had higher gas exchange rates and leaf nitrogen content than unburned shrubs, suggesting increased rates of carbon gain can contribute to recovery after fire. In areas recently burned, resprouts had higher gas exchange rates in the centre of the shrub than the periphery. In unburned areas, leaf physiology remained constant across the growing season within clonal shrubs (2015 and 2018). Results suggest single measurements within a shrub are likely sufficient to parameterize models to understand the effects of shrub encroachment on ecosystem carbon and water cycles, but model parameterization may require additional complexity in the context of fire. 
    more » « less
  3. Abstract

    The effect of species loss on ecosystem productivity is determined by both the functional contribution of the species lost, and the response of the remaining species in the community. According to the mass ratio hypothesis, the loss of a dominant plant species, which has a larger proportionate contribution to productivity, is expected to exert an overwhelming effect on this important ecosystem function. However, via competitive release, loss of a dominant species can provide the opportunity for other plant species to establish, thrive and become abundant in the community, potentially compensating for the function lost. Furthermore, if resource limitation is removed, then the compensatory response of function to the loss of a dominant species should be greater and more rapid than if resources are more limiting.

    To evaluate how resources may limit compensation of above‐ground productivity to the loss of a dominant plant species, we experimentally removed the C4perennial tallgrass,Andropogon gerardii, from intact plant communities. We added water for 4 years, as well as nitrogen in the fourth year, to test the effect of resource limitation on the compensatory response.

    Overall, above‐ground biomass production increased in the remaining community with both water and nitrogen addition. However, this increase in biomass production was not sufficient to fully compensate for the loss ofA. gerardii, indicating water and nitrogen were not limiting short‐term compensation in this community.

    Following the removal of the dominant species, there was reordering of species abundances in the community, rather than changes in species richness. The C4grassBouteloua curtipendulawas the most responsive species, increasing by 57.9% in abundance with water addition and 91.0% with both water and nitrogen addition. Despite this dramatic increase in abundance, its short stature and lower per capita biomass production prevented this species from compensating for the loss ofA. gerardii.

    Synthesis. Short‐term compensation after the loss of a dominant plant species can be hastened by increased resource availability, but ultimately full compensation appears to be limited by the presence and abundance of species in the remaining community that possess traits that allow them compensate for the species lost.

     
    more » « less
  4. Abstract

    Species that persist in small populations isolated by habitat destruction may experience reproductive failure. Self‐incompatible plants face dual threats of mate‐limitation and competition with co‐flowering plants for pollination services. Such competition may lower pollinator visitation, increase heterospecific pollen transfer and reduce the likelihood that a visit results in successful pollination.

    To understand how isolation from mates and competition with co‐flowering species contribute to reproductive failure in fragmented habitat, we conducted an observational study of a tallgrass prairie perennialEchinacea angustifolia. We quantified the isolation of focal individuals from mates, characterized species richness and counted inflorescences within 1 m radius, observed pollinator visitation, collected pollinators, quantified pollen loads on pollinators and onEchinaceastigmas, and measured pollination success. Throughout the season, we sampled 223 focal plants across 10 remnant prairie sites.

    We present evidence that both co‐flowering species and isolation from mates substantially limit reproduction inEchinacea. As the flowering season progressed, the probability of pollinator visitation to focal plants decreased and evidence for pollen‐limited reproduction increased. Pollinators were most likely to visitEchinaceaplants from low‐richness floral neighbourhoods with close potential mates, or plants from high‐richness neighbourhoods with distant potential mates. Frequent visitation only increased pollination success in the former case, likely becauseEchinaceain high‐richness floral neighbourhoods received low‐quality visits.

    Synthesis. InEchinacea,reproduction was limited by isolation from potential mates and the richness of co‐flowering species. These aspects of the floral neighbourhood influenced pollinator visitation and pollination success, although conditions that predicted high visitation did not always lead to high pollination success. These results reveal how habitat modification and destruction, which influence floral neighbourhood and isolation from conspecific mates, can differentially affect various stages of reproductive biology in self‐incompatible plants. Our results suggest that prairie conservation and restoration efforts that promote patches of greater floral diversity may improve reproductive outcomes in fragmented habitats.

     
    more » « less
  5. Abstract

    Plant-associated microbes, specifically fungal endophytes, augment the ability of many grasses to adapt to extreme environmental conditions. Tripsacum dactyloides (Eastern gamagrass) is a perennial, drought-tolerant grass native to the tallgrass prairies of the central USA. The extent to which the microbiome of T. dactyloides contributes to its drought tolerance is unknown. Ninety-seven genotypes of T. dactyloides were collected from native populations across an east–west precipitation gradient in Kansas, Oklahoma and Texas, and then grown together in a common garden for over 20 years. Root and leaf samples were visually examined for fungal density. Because fungal endophytes confer drought-tolerant capabilities to their host plants, we expected to find higher densities of fungal endophytes in plants from western, drier regions, compared to plants from eastern, wetter regions. Results confirmed a negative correlation between endophyte densities in roots and precipitation at the genotype’s original location (r = −0.21 P = 0.04). Our analyses reveal that the host genotype’s origin along the precipitation gradient predicts the absolute abundance of symbionts in the root, but not the relative abundances of particular organisms or the overall community composition. Overall, these results demonstrate that genetic variation for plant–microbe interactions can reflect historical environment, and reinforce the importance of considering plant genotype in conservation and restoration work in tallgrass prairie ecosystems.

     
    more » « less