skip to main content


Title: Riding out the storm: depleted fat stores and elevated hematocrit in a small bodied endotherm exposed to severe weather
Abstract

In the mid-continental grasslands of North America, climate change is increasing the intensity and frequency of extreme weather events. Increasingly severe storms and prolonged periods of elevated temperatures can impose challenges that adversely affect an individual's condition and, ultimately, survival. However, despite mounting evidence that extreme weather events, such as heavy rain storms, can impose short-term physiological challenges, we know little regarding the putative costs of such weather events. To determine the consequences of extreme weather for small endotherms, we tested predictions of the relationships between both severe precipitation events and wet bulb temperatures (an index that combines temperature and humidity) prior to capture with body composition and hematocrit of grasshopper sparrows (Ammodramus savannarum) caught during the breeding season at the Konza Prairie Biological Station, Kansas, USA, between 2014 and 2016. We measured each individual's fat mass, lean mass and total body water using quantitative magnetic resonance in addition to their hematocrit. Individuals exposed to storms in the 24 hours prior to capture had less fat reserves, more lean mass, more water and higher hematocrit than those exposed to moderate weather conditions. Furthermore, individuals stored more fat if they experienced high wet bulb temperatures in the week prior to capture. Overall, the analysis of these data indicate that extreme weather events take a physiological toll on small endotherms, and individuals may be forced to deplete fat stores and increase erythropoiesis to meet the physiological demands associated with surviving a storm. Elucidating the potential strategies used to cope with severe weather may enable us to understand the energetic consequences of increasingly severe weather in a changing world.

 
more » « less
Award ID(s):
2025849 1754491
NSF-PAR ID:
10467510
Author(s) / Creator(s):
; ; ;
Editor(s):
Cooke, Steven
Publisher / Repository:
Conservation Physiology
Date Published:
Journal Name:
Conservation Physiology
Volume:
11
Issue:
1
ISSN:
2051-1434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Humans’ essential ability to combat heat stress through sweat-based evaporative cooling is modulated by ambient air temperature and humidity, making humid heat a critical factor for human health. In this study, we relate the occurrence of extreme humid heat in two focus regions to two related modes of intraseasonal climate variability: the Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). In the Persian Gulf and South Asia during the May–June and July–August seasons, wet-bulb temperatures of 28°C are found to be almost twice as likely during certain oscillation phases than in others. Variations in moisture are found, to varying degrees, to be an important ingredient in anomalously high wet-bulb temperatures in all three areas studied, influenced by distinct local circulation anomalies. In the Persian Gulf, weakening of climatological winds associated with the intraseasonal oscillation’s propagating center of convection allows for anomalous onshore advection of humid air. Anomalously high wet-bulb temperatures in the northwestern region of South Asia are closely aligned with positive specific humidity anomalies associated with the convectively active phase of the oscillation. On the southeastern coast of India, high wet-bulb temperatures are associated with convectively inactive phases of the intraseasonal oscillation, suggesting that they may be driven by increased surface insolation and reduced evaporative cooling during monsoon breaks. Our results aid in building a foundation for subseasonal predictions of extreme humid heat in regions where it is highly impactful.

    Significance Statement

    Understanding when and why extreme humid heat occurs is essential for informing public health efforts protecting against heat stress. This analysis works to improve our understanding of humid heat variability in two at-risk regions, the Persian Gulf and South Asia. By exploring how subseasonal oscillations affect daily extreme events, this analysis helps bridge the prediction gap between weather and climate. We find that extreme humid heat is more than twice as likely during specific phases of these oscillations than in others. Extremes depend to different extents upon combinations of above-average temperature and humidity. This new knowledge of the regional drivers of humid heat variability is important to better prepare for the increasingly widespread health and socioeconomic impacts of heat stress.

     
    more » « less
  2. Increasingly frequent and intense heatwaves generate new challenges for many organisms. Our understanding of the ecological predictors of thermal vulnerability is improving, yet, at least in endotherms, we are still only beginning to understand one critical component of predicting resilience: exactly how do wild animals cope with sub-lethal heat? In wild endotherms, most prior work focuses on one or a few traits, leaving uncertainty about organismal consequences of heatwaves. Here, we experimentally generated a 2.8°C heatwave for free-living nestling tree swallows (Tachycineta bicolor). Over a week-long period coinciding with the peak of post-natal growth, we quantified a suite of traits to test the hypotheses that (a) behavioral or (b) physiological responses may be sufficient for coping with inescapable heat. Heat-exposed nestlings increased panting and decreased huddling, but treatment effects on panting dissipated over time, even though heat-induced temperatures remained elevated. Physiologically, we found no effects of heat on: gene expression of three heat shock proteins in blood, muscle, and three brain regions; secretion of circulating corticosterone at baseline or in response to handling; and telomere length. Moreover, heat had a positive effect on growth and a marginal, but not significant, positive effect on subsequent recruitment. These results suggest that nestlings were generally buffered from deleterious effects of heat, with one exception: heat-exposed nestlings exhibited lower gene expression for superoxide dismutase, a key antioxidant defense. Despite this one apparent cost, our thorough organismal investigation indicates general resilience to a heatwave that may, in part, stem from behavioral buffering and acclimation. Our approach provides a mechanistic framework that we hope will improve understanding of species persistence in the face of climate change. 
    more » « less
  3. Abstract

    Maternal effects often provide a mechanism for adaptive transgenerational phenotypic plasticity. The maternal phenotype can profoundly influence the potential for such environmentally induced adjustments of the offspring phenotype, causing correlations between offspring and maternal traits. Here, we study potential effects of the maternal phenotype on offspring provisioning prior to and during gestation in the matrotrophic live‐bearing fish speciesPoeciliopsis retropinna. Specifically, we examine how maternal traits such as body fat, lean mass, and length relate to pre‐ (i.e., allocation to the egg prior to fertilization) and post‐fertilization (i.e., allocation to the embryo during pregnancy) maternal provisioning and how this ultimately affects offspring size and body composition at birth. We show that pre‐ and post‐fertilization maternal provisioning is associated with maternal length and body fat, but not with maternal lean mass. Maternal length is proportionally associated with egg mass at fertilization and offspring mass at birth, notably without changing the ratio of pre‐ to post‐fertilization maternal provisioning. This ratio, referred to as the matrotrophy index (MI), is often used to quantify the level of matrotrophy. By contrast, the proportion of maternal body fat is positively associated with post‐fertilization, but not pre‐fertilization, maternal provisioning and consequently is strongly positively correlated with the MI. We furthermore found that the composition of embryos changes throughout pregnancy. Females invest first in embryo lean mass, and then allocate fat reserves to embryos very late in pregnancy. We argue that this delay in fat allocation may be adaptive, because it delays an unnecessary high reproductive burden to the mother during earlier stages of pregnancy, potentially leading to a more slender body shape and improved locomotor performance. In conclusion, our study suggests that (a) offspring size at birth is a plastic trait that is predicted by both maternal length and body fat, and (b) the MI is a plastic trait that is predicted solely by the proportion of maternal body fat. It herewith provides new insights into the potential maternal causes and consequences of embryo provisioning during pregnancy in matrotrophic live‐bearing species.

     
    more » « less
  4. Abstract

    Climate change is expected to increase weather extremes and variability, including more frequent weather whiplashes or extreme swings between severe drought and extraordinarily wet years. Shifts in precipitation patterns will alter stream flow regimes, affecting critical life history stages of sensitive aquatic organisms. Understanding how threatened fish species, such as steelhead/rainbow trout (Oncorhynchus mykiss), are affected by stream flows in years with contrasting environmental conditions is important for their conservation. Here, we report how extreme wet and dry years, from 2015 to 2018, affected stream flow patterns in two tributaries to the South Fork Eel River, California,USA, and aspects ofO. mykissecology, including over‐summer fish growth and body condition as well as spring out‐migration timing. We found that stream flow patterns differed across years in the timing and magnitude of large winter–spring flow events and in summer low‐flow levels. We were surprised to find that differences in stream flows did not impact growth, body condition, or timing of out‐migration ofO. mykiss. Fish growth was limited in the late summer in these streams (average of 0.02 ± 0.05 mm/d), but was similar across dry and wet years, and so was end‐of‐summer body condition and pool‐specific biomass loss from the beginning to the end of the summer. Similarly,O. mykissmigrated out of tributaries during the last week of March/first week of April regardless of the timing of spring flow events. We suggest that the muted response to inter‐annual hydrologic variability is due to the high quality of habitat provided by these unimpaired, groundwater‐fed tributaries. Similar streams that are likely to maintain cool temperatures and sufficient base flows, even in the driest years, should be a high priority for conservation and restoration efforts.

     
    more » « less
  5. Abstract Objectives

    An energetically demanding environment like a wilderness expedition can lead to potent stressors on human physiology and homeostatic balance causing shifts in energy expenditure and body composition. These shifts likely have consequences on overall health and performance and may potentially differ by sex. It is therefore critical to understand the potential differential body composition and energy expenditure changes in response to a novel and challenging environment in both males and female bodies.

    Methods

    Data were collected from 75 healthy individuals (female = 41; ages 18–53) throughout a 3‐month long expedition in the American Rockies. Body mass, body fat, and lean muscle mass were measured before, during, and after the course. Physical activity intensity and energy expenditure were also measured in a subset of participants using the wGT3X‐BT Actigraph wrist monitor and an accompanying Bluetooth heart rate monitor.

    Results

    Over the 3‐month period, individuals initially experienced declines in body mass, body fat percentage, and lean muscle mass. Participants partially rebounded from these deficits to maintain overall body mass with a slight recomposition of body fat and lean muscle mass. Our data also demonstrated that sex moderated total energy expenditure, where females experienced a modest decline whereas males experienced an increase in energy expenditure from the beginning to the end of the course.

    Conclusions

    Understanding changes in energy storage in the body and variation in energy expenditure between sexes during a 3‐month expedition has critical implications for maintaining health and performance in an energetically demanding environment where resources may be scarce.

     
    more » « less