skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ancient vertebrate dermal armor evolved from trunk neural crest
Bone is an evolutionary novelty of vertebrates, likely to have first emerged as part of ancestral dermal armor that consisted of osteogenic and odontogenic components. Whether these early vertebrate structures arose from mesoderm or neural crest cells has been a matter of considerable debate. To examine the developmental origin of the bony part of the dermal armor, we have performed in vivo lineage tracing in the sterlet sturgeon, a representative of nonteleost ray-finned fish that has retained an extensive postcranial dermal skeleton. The results definitively show that sterlet trunk neural crest cells give rise to osteoblasts of the scutes. Transcriptional profiling further reveals neural crest gene signature in sterlet scutes as well as bichir scales. Finally, histological and microCT analyses of ray-finned fish dermal armor show that their scales and scutes are formed by bone, dentin, and hypermineralized covering tissues, in various combinations, that resemble those of the first armored vertebrates. Taken together, our results support a primitive skeletogenic role for the neural crest along the entire body axis, that was later progressively restricted to the cranial region during vertebrate evolution. Thus, the neural crest was a crucial evolutionary innovation driving the origin and diversification of dermal armor along the entire body axis.  more » « less
Award ID(s):
2029216
PAR ID:
10467574
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
30
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The neural crest is vertebrate-specific stem cell population that helped drive the origin and evolution of the vertebrate clade. A distinguishing feature of these stem cells is their multi-germ layer potential, which has drawn developmental and evolutionary parallels to another stem cell population—pluripotent embryonic stem cells (animal pole cells or ES cells) of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks (GRNs) in both jawed (Xenopus) and jawless (lamprey) vertebrates. Through comparative gene expression analysis and transcriptomics, we reveal an ancient evolutionary origin of shared regulatory factors between neural crest and pluripotency GRNs that dates back to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factorpou5(formerly oct4), we show that the lamprey genome encodes apou5ortholog that is expressed in animal pole cells, as in jawed vertebrates, but is absent from the neural crest. However, gain-of-function experiments show that both lamprey andXenopus pou5enhance neural crest formation, suggesting thatpou5was lost from the neural crest of jawless vertebrates. Finally, we show thatpou5is required for neural crest specification in jawed vertebrates and that it acquired novel neural crest-enhancing activity after evolving from an ancestralpou3-like clade that lacks this functionality. We propose that a pluripotency-neural crest GRN was assembled in stem vertebrates and that the multi-germ layer potential of the neural crest evolved by deploying this regulatory program. 
    more » « less
  2. The emergence of a new phylogeny of ray-finned fishes at the turn of the twenty-first century marked a paradigm shift in understanding the evolutionary history of half of living vertebrates. We review how the new ray-finned fish phylogeny radically departs from classical expectations based on morphology. We focus on evolutionary relationships that span the backbone of ray-finned fish phylogeny, from the earliest divergences among teleosts and nonteleosts to the resolution of major lineages of Percomorpha. Throughout, we feature advances gained by the new phylogeny toward a broader understanding of ray-finned fish evolutionary history and the implications for topics that span from the genetics of human health to reconsidering the concept of living fossils. Additionally, we discuss conceptual challenges that involve reconciling taxonomic classification with phylogenetic relationships and propose an alternate higher-level classification for Percomorpha. Our review highlights remaining areas of phylogenetic uncertainty and opportunities for comparative investigations empowered by this new phylogenetic perspective on ray-finned fishes. 
    more » « less
  3. Abstract The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin’s importance for illuminating vertebrate biology and diversity in the genomic era. 
    more » « less
  4. Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation. 
    more » « less
  5. Abstract Many vertebrates are armored over all or part of their body. The armor may serve several functional roles including defense, offense, visual display, and signal of experience/capability. Different roles imply different tradeoffs; for example, defensive armor usually trades resistance to attack for maneuverability. The poachers (Agonidae), 47 species of scorpaeniform fishes, are a useful system for understanding the evolution and function of armor due to their variety and extent of armoring. Using publically available CT‐scan data from 27 species in 16 of 21 genera of poachers we compared the armor to axial skeletal in the mid body region. The ratio of average armor density to average skeleton density ranged from 0.77 to 1.17. From a defensive point of view, the total investment in mineralization (volume * average density) is more interesting. There was 10 times the material invested in the armor as in the endoskeleton in some small, smooth plated species, likeAspidophoroides olrikii. At the low end, some visually arresting species likePercis japonica, had ratios as low as 2:1. We categorized the extent and type (impact vs. abrasion) in 34Agonopsis vulsaacross all 35+ plates in the eight rows along the body. The ventral rows show abrasive damage along the entire length of the fish that gets worse with age. Impact damage to head and tail plates gets more severe and occurs at higher rates with age. The observed damage rates and the large investment in mineralization of the armor suggest that it is not just for show, but is a functional defensive structure. We cannot say what the armor is defense against, but the abrasive damage on the ventrum implies their benthic lifestyle involves rubbing on the substrate. The impact damage could result from predatory attacks or from intraspecific combat. 
    more » « less