skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Using Ensemble Sensitivity Analysis to Identify Storm Characteristics Associated with Tornadogenesis in High-Resolution Simulated Supercells

This study aims to objectively identify storm-scale characteristics associated with tornado-like vortex (TLV) formation in an ensemble of high-resolution supercell simulations. An ensemble of 51 supercells is created using Cloud Model version 1 (CM1). The first member is initialized using a base state populated by the Rapid Update Cycle (RUC) proximity sounding near El Reno, Oklahoma, on 24 May 2011. The other 50 ensemble members are created by randomly perturbing the base state after a supercell has formed. There is considerable spread between ensemble members, with some supercells producing strong, long-lived TLVs, while others do not produce a TLV at all. The ensemble is analyzed using the ensemble sensitivity analysis (ESA) technique, uncovering storm-scale characteristics that are dynamically relevant to TLV formation. In the rear flank, divergence at the surface southeast of the TLV helps converge and contract existing vertical vorticity, but there is no meaningful sensitivity to rear-flank outflow temperature. In the forward flank, warm temperatures within the cold pool are important to TLV production and magnitude. The longitudinal positioning of strong streamwise vorticity is also a clear indicator of TLV formation and strength, especially within 5 min of when the TLV is measured.

Significance Statement

Tornadoes that form in supercell thunderstorms (long-lived storms with a rotating updraft) are heavily influenced by the features created by the storm itself, such as the temperature of a downdraft. In this study, many different iterations of a strong supercell thunderstorm are simulated, in which tornado-like features are formed at different times with widely different strengths. A statistical method is used to identify what the storms had in common when they produced a tornado-like feature, and what they had in common when one failed to form. This study is important because it highlights which storm features are most influential to tornado formation using an objective method, with results that can be used when observing supercells in the field.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Medium: X Size: p. 2633-2658
["p. 2633-2658"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study analyzes aboveground thermodynamic observations in three tornadic supercells obtained via swarms of small balloon-borne sondes acting aspseudo-Lagrangiandrifters; the storm-relative winds draw the sondes through the precipitation, outflow, and baroclinic zones, which are believed to play key roles in tornado formation. Three-dimensional thermodynamic analyses are produced from the in situ observations. The coldest air is found at the lowest analysis levels, where virtual potential temperature deficits of 2–5 K are observed. Air parcels within the forward-flank outflow are inferred from their equivalent potential temperatures to have descended only a few hundred meters or less, whereas parcels within the rear-flank outflow are inferred to have downward excursions of 1–2 km. Additionally, the parcels following paths toward the low-level mesocyclone pass through horizontal buoyancy gradients that are strongest in the lowest 750 m and estimated to be capable of baroclinically generating horizontal vorticity having a magnitude of 6–10 × 10−3s−1. A substantial component of the baroclinically generated vorticity is initially crosswise, though the vorticity subsequently could become streamwise given the leftward bending of the airstream in which the vorticity is generated. The baroclinically generated vorticity could contribute to tornado formation upon being tilted upward and stretched near the surface beneath a strong, dynamically forced updraft.

    Significance Statement

    Swarms of balloon-borne probes are used to produce the first-ever, three-dimensional mappings of temperature from in situ observations within supercell storms (rotating storms with high tornado potential). Temperature has a strong influence on the buoyancy of air, and horizontal variations of buoyancy generate spin about a horizontal axis. Buoyancy is one of the primary drivers of upward and downward motions in thunderstorms, and in supercell storms, horizontally oriented spin can be tipped into the vertical and amplified by certain arrangements of upward and downward motions. Unfortunately, the long-standing lack of temperature observations has hampered scientists’ ability to evaluate computer simulations and the tornadogenesis theories derived from them. We find that significant spin could be generated by the horizontal buoyancy variations sampled by the probes.

    more » « less
  2. Abstract

    Supercell thunderstorms develop low-level rotation via tilting of environmental horizontal vorticity (ωh) by the updraft. This rotation induces dynamic lifting that can stretch near-surface vertical vorticity into a tornado. Low-level updraft rotation is generally thought to scale with 0–500 m storm-relative helicity (SRH): the combination of storm-relative flow, |SRF|, |ωh|, and cosϕ(whereϕis the angle betweenSRFandωh). It is unclear how much influence each component of SRH has in intensifying the low-level mesocyclone. This study surveys these three components using self-organizing maps (SOMs) to distill 15 906 proximity soundings for observed right-moving supercells. Statistical analyses reveal the component most highly correlated to SRH and to streamwise vorticity (ωs) in the observed profiles is |ωh|. Furthermore, |ωh| and |SRF| are themselves highly correlated due to their shared dependence on the hodograph length. The representative profiles produced by the SOMs were combined with a common thermodynamic profile to initialize quasi-realistic supercells in a cloud model. The simulations reveal that, across a range of real-world profiles, intense low-level mesocyclones are most closely linked toωhandSRF, while the angle between them appears to be mostly inconsequential.

    Significance Statement

    About three-fourths of all tornadoes are produced by rotating thunderstorms (supercells). When the part of the storm near cloud base (approximately 1 km above the ground) rotates more strongly, the chance of a tornado dramatically increases. The goal of this study is to identify the simplest characteristic(s) of the environmental wind profile that can be used to forecast the likelihood of strong cloud-base rotation. This study concludes that the most important ingredients for storm rotation are the magnitudes of the horizontal vertical wind shear between the surface and 500 m and the storm inflow wind, irrespective of their relative directions. This finding may lead to improved operational identification of environments favoring tornado formation.

    more » « less
  3. Abstract

    Surface boundaries in supercells have been suspected of being important in the arrangement and concentration of vorticity for the development and intensification of tornadoes, but there has been little attention given to the effects of the underlying surface roughness on their behavior. This study investigates the impact of surface drag on the structure and evolution of these boundaries, their associated distribution of near-surface vorticity, and tornadogenesis and maintenance. Comparisons between idealized simulations without and with drag introduced in the mature stage of the storm prior to tornadogenesis reveal that the inclusion of surface drag substantially alters the low-level structure, particularly with respect to the number, location, and intensity of surface convergence boundaries. Substantial drag-generated horizontal vorticity induces rotor structures near the surface associated with the convergence boundaries in both the forward and rear flanks of the storm. Stretching of horizontal vorticity and subsequent tilting into the vertical along the convergence boundaries lead to elongated positive vertical vorticity sheets on the ascending branch of the rotors and the opposite on the descending branch. The larger near-surface pressure deficit associated with the faster development of the near-surface cyclone when drag is active creates a downward dynamic vertical pressure gradient force that suppresses vertical growth, leading to a weaker and wider tornado detached from the surrounding convergence boundaries. A conceptual model of the low-level structure of the tornadic supercell is presented that focuses on the contribution of surface drag, with the aim of adding more insight and complexity to previous conceptual models.

    Significance Statement

    Tornado development is sensitive to near-surface processes, including those associated with front-like boundaries between regions of airflow within the parent storm. However, observations and theory are insufficient to understand these phenomena, and numerical simulation remains vital. In our simulations, we find that a change in a parameter that controls how much the near-surface winds are reduced by friction (or drag) can substantially alter the storm behavior and tornado potential. We investigate how surface drag affects the low-level storm structure, the distribution of regions of near-surface rotation, and the development of tornadoes within the simulation. Our results provide insight into the role of surface drag and lead to an improved conceptual model of the near-surface structure of a tornadic storm.

    more » « less
  4. Abstract A 25-member ensemble of relatively high-resolution (75-m horizontal grid spacing) numerical simulations of tornadic supercell storms is used to obtain insight on their intrinsic predictability. The storm environments contain large and directionally varying wind shear, particularly in the boundary layer, large convective available potential energy, and a low lifting condensation level. Thus, the environments are extremely favorable for tornadic supercells. Small random temperature perturbations present in the initial conditions trigger turbulence within the boundary layers. The turbulent boundary layers are given 12 h to evolve to a quasi–steady state before storms are initiated via the introduction of a warm bubble. The spatially averaged environments are identical within the ensemble; only the random number seed and/or warm bubble location is varied. All of the simulated storms are long-lived supercells with intense updrafts and strong mesocyclones extending to the lowest model level. Even the storms with the weakest near-surface rotation probably can be regarded as weakly tornadic. However, despite the statistically identical environments, there is considerable divergence in the finescale details of the simulated storms. The intensities of the tornado-like vortices that develop in the simulations range from EF0 to EF3, with large differences in formation time and duration also being exhibited. The simulation differences only can be explained by differences in how the initial warm bubbles and/or storms interact with turbulent boundary layer structures. The results suggest very limited intrinsic predictability with respect to predicting the formation time, duration, and intensity of tornadoes. 
    more » « less
  5. Abstract

    A total of 257 supercell proximity soundings obtained for field programs over the central United States are compared with profiles extracted from the SPC mesoscale analysis system (the SFCOA) to understand how errors in the SFCOA and in its baseline model analysis system—the RUC/RAP—might impact climatological assessments of supercell environments. A primary result is that the SFCOA underestimates the low-level storm-relative winds and wind shear, a clear consequence of the lack of vertical resolution near the ground. The near-ground (≤500 m) wind shear is underestimated similarly in near-field, far-field, tornadic, and nontornadic supercell environments. The near-ground storm-relative winds, however, are underestimated the most in the near-field and in tornadic supercell environments. Underprediction of storm-relative winds is, therefore, a likely contributor to the lack of differences in storm-relative winds between nontornadic and tornadic supercell environments in past studies that use RUC/RAP-based analyses. Furthermore, these storm-relative wind errors could lead to an under emphasis of deep-layer SRH variables relative to shallower SRH in discriminating nontornadic from tornadic supercells. The mean critical angles are 5°–15° larger and farther from 90° in the observed soundings than in the SFCOA, particularly in the near field, likely indicating that the ratio of streamwise to crosswise horizontal vorticity is often smaller than that suggested by the SFCOA profiles. Errors in thermodynamic variables are less prevalent, but show low-level CAPE to be too low closer to the storms, a dry bias above the boundary layer, and the absence of shallow near-ground stable layers that are much more prevalent in tornadic supercell environments.

    Significance Statement

    A total of 257 radiosonde observations taken close to supercell thunderstorms during field programs over the last 25 years are compared with a model-based analysis system (the SFCOA), which is often used for studying supercell thunderstorm environments. We present error characteristics of the SFCOA as they relate to tornado production and distance to the storm to clarify interpretations of environments favorable for tornado production made from past studies that use the SFCOA. A primary result is that the SFCOA underpredicts the speed and shear of the air flowing toward the storm in many cases, which may lead to different interpretations of variables that are most important for discriminating tornadic from nontornadic supercell thunderstorms. These results help to refine our understanding of the conditions that support tornado formation, which provides guidance on environmental cues that can improve the prediction of supercell tornadoes.

    more » « less