skip to main content


Title: Disentangling the Influences of Storm-Relative Flow and Horizontal Streamwise Vorticity on Low-Level Mesocyclones in Supercells
Abstract Sufficient low-level storm-relative flow is a necessary ingredient for sustained supercell thunderstorms and is connected to supercell updraft width. Assuming a supercell exists, the role of low-level storm-relative flow in regulating supercells’ low-level mesocyclone intensity is less clear. One possibility considered in this article is that storm-relative flow controls mesocyclone and tornado width via its modulation of overall updraft extent. This hypothesis relies on a previously postulated positive correspondence between updraft width, mesocyclone width, and tornado width. An alternative hypothesis is that mesocyclone characteristics are primarily regulated by horizontal streamwise vorticity irrespective of storm-relative flow. A matrix of supercell simulations was analyzed to address the aforementioned hypotheses, wherein horizontal streamwise vorticity and storm-relative flow were independently varied. Among these simulations, mesocyclone width and intensity were strongly correlated with horizontal streamwise vorticity, and comparatively weakly correlated with storm-relative flow, supporting the second hypothesis. Accompanying theory and trajectory analysis offers the physical explanation that, when storm-relative flow is large and updrafts are wide, vertically tilted streamwise vorticity is projected over a wider area but with a lesser average magnitude than when these parameters are small. These factors partially offset one another, degrading the correspondence of storm-relative flow with updraft circulation and rotational velocity, which are the mesocyclone attributes most closely tied to tornadoes. These results refute the previously purported connections between updraft width, mesocyclone width, and tornado width, and emphasize horizontal streamwise vorticity as the primary control on low-level mesocyclones in sustained supercells. Significance Statement The intensity of a supercell thunderstorm’s low-level rotation, known as the “mesocyclone,” is thought to influence tornado likelihood. Mesocyclone intensity depends on many environmental attributes that are often correlated with one another and difficult to disentangle. This study used a large body of numerical simulations to investigate the influence of the speed of low-level air entering a supercell (storm-relative flow), the horizontal spin of the ambient air entering the thunderstorm (streamwise vorticity), and the width of the storm’s updraft. Our results suggest that the rotation of the mesocyclone in supercells is primarily influenced by streamwise vorticity, with comparatively weaker connections to storm-relative flow and updraft width. These findings provide important clarification in our scientific understanding of how a storm’s environment influences the rate of rotation of its mesocyclone, and the associated tornado threat.  more » « less
Award ID(s):
1748715 2130936
NSF-PAR ID:
10417767
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
80
Issue:
1
ISSN:
0022-4928
Page Range / eLocation ID:
129 to 149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Supercell thunderstorms develop low-level rotation via tilting of environmental horizontal vorticity (ωh) by the updraft. This rotation induces dynamic lifting that can stretch near-surface vertical vorticity into a tornado. Low-level updraft rotation is generally thought to scale with 0–500 m storm-relative helicity (SRH): the combination of storm-relative flow, |SRF|, |ωh|, and cosϕ(whereϕis the angle betweenSRFandωh). It is unclear how much influence each component of SRH has in intensifying the low-level mesocyclone. This study surveys these three components using self-organizing maps (SOMs) to distill 15 906 proximity soundings for observed right-moving supercells. Statistical analyses reveal the component most highly correlated to SRH and to streamwise vorticity (ωs) in the observed profiles is |ωh|. Furthermore, |ωh| and |SRF| are themselves highly correlated due to their shared dependence on the hodograph length. The representative profiles produced by the SOMs were combined with a common thermodynamic profile to initialize quasi-realistic supercells in a cloud model. The simulations reveal that, across a range of real-world profiles, intense low-level mesocyclones are most closely linked toωhandSRF, while the angle between them appears to be mostly inconsequential.

    Significance Statement

    About three-fourths of all tornadoes are produced by rotating thunderstorms (supercells). When the part of the storm near cloud base (approximately 1 km above the ground) rotates more strongly, the chance of a tornado dramatically increases. The goal of this study is to identify the simplest characteristic(s) of the environmental wind profile that can be used to forecast the likelihood of strong cloud-base rotation. This study concludes that the most important ingredients for storm rotation are the magnitudes of the horizontal vertical wind shear between the surface and 500 m and the storm inflow wind, irrespective of their relative directions. This finding may lead to improved operational identification of environments favoring tornado formation.

     
    more » « less
  2. Abstract

    This case study analyzes a tornadic supercell observed in northeast Louisiana as part of the Verification of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE) on 6–7 April 2018. One mobile research radar (SR1-P), one WSR-88D equivalent (KULM), and two airborne radars (TAFT and TFOR) have sampled the storm at close proximity for ∼70 min through its mature phase, tornadogenesis at 2340 UTC, and dissipation and subsequent ingestion into a developing MCS segment. The 4D wind field and reflectivity from up to four Doppler analyses, combined with 4D diabatic Lagrangian analysis (DLA) retrievals, has enabled kinematic and thermodynamic analysis of storm-scale boundaries leading up to, during, and after the dissipation of the NWS-surveyed EF0 tornado. The kinematic and thermodynamic analyses reveal a transient current of low-level streamwise vorticity leading into the low-level supercell updraft, appearing similar to the streamwise vorticity current (SVC) that has been identified in supercell simulations and previously observed only kinematically. Vorticity dynamical calculations demonstrate that both baroclinity and horizontal stretching play significant roles in the generation and amplification of streamwise vorticity associated with this SVC. While the SVC does not directly feed streamwise vorticity to the tornado–cyclone, its development coincides with tornadogenesis and an intensification of the supercell’s main low-level updraft, although a causal relationship is unclear. Although the mesoscale environment is not high-shear/low-CAPE (HSLC), the updraft of the analyzed supercell shares some similarities to past observations and simulations of HSLC storms in the Southeast United States, most notably a pulse-like updraft that is maximized in the low- to midlevels of the storm.

    Significance Statement

    The purpose of this study is to analyze the airflow and thermodynamics of a highly observed tornado-producing supercell. While computer simulations can provide us with highly detailed looks at the complicated evolution of supercells, it is rare, due to the difficulty of data collection, to collect enough data to perform a highly detailed analysis on a particular supercell, especially in the Southeast United States. We identified a “current” of vorticity—rotating wind—that develops at the intersection of the supercell’s rain-cooled outflow and warm inflow, similar to previous simulations. This vorticity current develops and feeds the storm’s updraft as its tornado develops and the storm intensifies, although it does not directly enter the tornado.

     
    more » « less
  3. Abstract

    The development and intensification of low-level mesocyclones in supercell thunderstorms have often been attributed, at least in part, to augmented streamwise vorticity generated baroclinically in the forward flank of supercells. However, the ambient streamwise vorticity of the environment (often quantified via storm-relative helicity), especially near the ground, is particularly skillful at discriminating between nontornadic and tornadic supercells. This study investigates whether the origins of the inflow air into supercell low-level mesocyclones, both horizontally and vertically, can help explain the dynamical role of environmental versus storm-generated vorticity in the development of low-level mesocyclone rotation. Simulations of supercells, initialized with wind profiles common to supercell environments observed in nature, show that the air bound for the low-level mesocyclone primarily originates from the ambient environment (rather than from along the forward flank) and from very close to the ground, often in the lowest 200–400 m of the atmosphere. Given that the near-ground environmental air comprises the bulk of the inflow into low-level mesocyclones, this likely explains the forecast skill of environmental streamwise vorticity in the lowest few hundred meters of the atmosphere. The low-level mesocyclone does not appear to require much augmentation from the development of additional horizontal vorticity in the forward flank. Instead, the dominant contributor to vertical vorticity within the low-level mesocyclone is from the environmental horizontal vorticity. This study provides further context to the ongoing discussion regarding the development of rotation within supercell low-level mesocyclones.

    Significance Statement

    Supercell thunderstorms produce the majority of tornadoes, and a defining characteristic of supercells is their rotating updraft, known as the “mesocyclone.” When the mesocyclone is stronger at lower altitudes, the likelihood of tornadoes increases. The purpose of this study is to understand if the rotation of the mesocyclone in supercells is due to horizontal spin present in the ambient environment or whether additional horizontal spin generated by the storm itself primarily drives this rotation. Our results suggest that inflow air into supercells and low-level mesocyclone rotation are mainly due to the properties of the environmental inflow air, especially near the ground. This hopefully provides further context to how our community views the development of low-level mesocyclones in supercells.

     
    more » « less
  4. Abstract

    This study analyzes aboveground thermodynamic observations in three tornadic supercells obtained via swarms of small balloon-borne sondes acting aspseudo-Lagrangiandrifters; the storm-relative winds draw the sondes through the precipitation, outflow, and baroclinic zones, which are believed to play key roles in tornado formation. Three-dimensional thermodynamic analyses are produced from the in situ observations. The coldest air is found at the lowest analysis levels, where virtual potential temperature deficits of 2–5 K are observed. Air parcels within the forward-flank outflow are inferred from their equivalent potential temperatures to have descended only a few hundred meters or less, whereas parcels within the rear-flank outflow are inferred to have downward excursions of 1–2 km. Additionally, the parcels following paths toward the low-level mesocyclone pass through horizontal buoyancy gradients that are strongest in the lowest 750 m and estimated to be capable of baroclinically generating horizontal vorticity having a magnitude of 6–10 × 10−3s−1. A substantial component of the baroclinically generated vorticity is initially crosswise, though the vorticity subsequently could become streamwise given the leftward bending of the airstream in which the vorticity is generated. The baroclinically generated vorticity could contribute to tornado formation upon being tilted upward and stretched near the surface beneath a strong, dynamically forced updraft.

    Significance Statement

    Swarms of balloon-borne probes are used to produce the first-ever, three-dimensional mappings of temperature from in situ observations within supercell storms (rotating storms with high tornado potential). Temperature has a strong influence on the buoyancy of air, and horizontal variations of buoyancy generate spin about a horizontal axis. Buoyancy is one of the primary drivers of upward and downward motions in thunderstorms, and in supercell storms, horizontally oriented spin can be tipped into the vertical and amplified by certain arrangements of upward and downward motions. Unfortunately, the long-standing lack of temperature observations has hampered scientists’ ability to evaluate computer simulations and the tornadogenesis theories derived from them. We find that significant spin could be generated by the horizontal buoyancy variations sampled by the probes.

     
    more » « less
  5. Abstract

    Large midlevel (3–6 km AGL) shear is commonly observed in supercell environments. However, any possible influence of midlevel shear on an updraft has been relatively unexplored until now. To investigate, we ran 10 simulations of supercells in a range of environments with varying midlevel shear magnitudes. In most cases, larger midlevel shear results in a storm motion that is faster relative to the low-level hodograph, meaning that larger midlevel shear leads to stronger low-level storm-relative flow. Because they are physically connected, we present an analysis of the effects of both midlevel shear and low-level storm-relative flow on supercell updraft dynamics. Larger midlevel shear does not lead to an increase in cohesive updraft rotation. The tilting of midlevel environmental vorticity does lead to localized areas of larger vertical vorticity on the southern edge of the updraft, but any dynamical influence of this is overshadowed by that of much larger horizontal vorticity in the same area associated with rotor-like circulations. This storm-generated horizontal vorticity is the primary driver behind lower nonlinear dynamic pressure on the southern flank of the midlevel updraft when midlevel shear and low-level storm-relative flow are larger, which leads to a larger nonlinear dynamic pressure acceleration in those cases. Storm-generated horizontal vorticity is responsible for the lowest nonlinear dynamic pressure anywhere in the midlevel updraft, unless the mesocyclone becomes particularly intense. These results clarify the influence of midlevel shear on a supercell thunderstorm, and provide additional insight on the role of low-level storm-relative flow on updraft dynamics.

    Significance Statement

    Persistent rotation in supercell thunderstorms results from the tilting of horizontal spin into the vertical direction. This initially horizontal spin is the result of shear, which is a change in wind speed and/or direction with height. More shear in the layer 0–3 km above ground level is well understood to lead to stronger rotation within the storm, but the influence of shear in the 3–6-km layer is unclear and is investigated here. We find that horizontal spin originating in the 3–6-km layer has little impact on vertically oriented thunderstorm rotation. Instead, intense regions of horizontal spin that are generated by the storm itself (rather than having originated from the background environment) dominate storm dynamics at midlevels.

     
    more » « less