skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Asymmetric response of Amazon forest water and energy fluxes to wet and dry hydrological extremes reveals onset of a local drought‐induced tipping point
Abstract

Understanding the effects of intensification of Amazon basin hydrological cycling—manifest as increasingly frequent floods and droughts—on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest “tipping points”. Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001–2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015–2016 El Niño drought and La Niña 2008–2009 wet events. We found that the forest responded strongly to El Niño‐Southern Oscillation (ENSO): Drought reduced water availability for evapotranspiration (ET) leading to large increases in sensible heat fluxes (H). PartitioningETby an approach that assumes transpiration (T) is proportional to photosynthesis, we found that water stress‐induced reductions in canopy conductance (Gs) droveTdeclines partly compensated by higher evaporation (E). By contrast, the abnormally wet La Niña period gave higherTand lowerE, with little change in seasonalET. Both El Niño‐Southern Oscillation (ENSO) events resulted in changes in forest structure, manifested as lower wet‐season leaf area index. However, only during El Niño 2015–2016, we observed a breakdown in the strong meteorological control of transpiration fluxes (via energy availability and atmospheric demand) because of slowing vegetation functions (via shutdown ofGsand significant leaf shedding). Drought‐reducedTandGs, higherHandE, amplified by feedbacks with higher temperatures and vapor pressure deficits, signaled that forest function had crossed a threshold, from which it recovered slowly, with delay, post‐drought. Identifying such tipping point onsets (beyond which future irreversible processes may occur) at local scale is crucial for predicting basin‐scale threshold‐crossing changes in forest energy and water cycling, leading to slow‐down in forest function, potentially resulting in Amazon forests shifting into alternate degraded states.

 
more » « less
Award ID(s):
1949894 1753973 1754803 2106804 2403882
PAR ID:
10467640
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
29
Issue:
21
ISSN:
1354-1013
Format(s):
Medium: X Size: p. 6077-6092
Size(s):
p. 6077-6092
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global atmospheric methane growth rates have wildly fluctuated over the past three decades, which may be driven by the proportion of tropical land surface saturated by water. The El Niño/Southern Oscillation Event (ENSO) cycle drives large‐scale climatic trends globally, with El Niño events typically bringing drier weather than La Niña. In a lowland tropical wet forest in Costa Rica, we measured methane flux bimonthly from March 2016 to June 2017 and using an automated chamber system. We observed a strong drying trend for several weeks during the El Niño in 2016, reducing soil moisture below normal levels. In contrast, soil conditions had high water content prior to the drought and during the moderate La Niña that followed. Soil moisture varied across the period studied and significantly impacted methane flux. Methane consumption was greater during the driest part of the El Niño period, while during La Niña and other time periods, soils had lower methane consumption. The mean methane flux observed was −0.022 mg CH4‐C m−2hr−1, and methane was consumed at all timepoints, with lower consumption in saturated soils. Our data show that month studied, and the correlation between soil type and month significantly drove methane flux trends. Our data indicate that ENSO cycles may impact biogenic methane fluxes, mediated by soil moisture conditions. Climate projections for Central America show dryer conditions and increased El Niño frequency, further exacerbating predicted drought. These trends may lead to negative climate feedbacks, with drier conditions increasing soil methane consumption from the atmosphere.

     
    more » « less
  2. Abstract

    Precipitation in the outer tropical Andes is highly seasonal, exhibits considerable interannual variability, and is vital for regulating freshwater availability, flooding, glacier mass balance, and droughts. The primary driver of interannual variability is El Niño Southern Oscillation (ENSO), with most investigations reporting that the El Niño (La Niña) results in negative (positive) precipitation anomalies across the region. Recent investigations, however, have identified substantial spatiotemporal differences in ENSO‐precipitation relationships. Motivated by the dissimilarity of these findings, this study examines a carefully selected data set (≥ 90% completeness) of ground‐based precipitation observations from 75 high‐elevation (≥ 2,500 m above sea level) meteorological stations in the tropical Andes of southern Peru and Bolivia for the period 1972–2016. Distinct groups of stations and associated variability in precipitation characteristics (e.g., total seasonal precipitation, wet season onset, and wet season length) are identified. Using no spatial constraints, the K‐Means algorithm optimally grouped stations into five easily identifiable groups. The groups farthest from the Amazon basin had significant negative (positive) precipitation anomalies (p < .05) during El Niño (La Niña), aligning with the traditional view of ENSO‐precipitation relationships while groups closest to the Amazon had opposite relationships. Additionally, though studies have reported delays in the wet season, years characterized by El Niño had an earlier wet season onset in all five groups. These findings may aid in improving seasonal climate prediction and managing water resources, and could allow for improved interpretation of tropical Andean ice cores.

     
    more » « less
  3. Abstract

    Theδ18O signal in ice cores from the Quelccaya Ice Cap (QIC), Peru, corresponds with and has been used to reconstruct Niño region sea surface temperatures (SSTs), but the physical mechanisms that tie El Niño–Southern Oscillation (ENSO)‐related equatorial Pacific SSTs to snowδ18O at 5,680 m in the Andes have not been fully established. We use a proxy system model to simulate how QIC snowδ18O varies by ENSO phase. The model accurately simulates higher and lowerδ18O values during El Niño and La Niña, respectively. We then explore the relative roles of ENSO forcing on different components of the forward model: (i) the seasonality and amount of snow gain and loss at the QIC, (ii) the initial water vaporδ18O values, and (iii) regional temperature. Most (more than two thirds) of the ENSO‐related variability in the QICδ18O can be accounted for by ENSO's influence on South American summer monsoon (SASM) activity and the resulting change in the initial water vapor isotopic composition. The initial water vaporδ18O values are affected by the strength of upstream convection associated with the SASM. Since convection over the Amazon is enhanced during La Niña, the water vapor over the western Amazon Basin—which serves as moisture source for snowfall on QIC—is characterized by more negativeδ18O values. In the forward model, higher initial water vaporδ‐values during El Niño yield higher snowδ18O at the QIC. Our results clarify that the ENSO‐related isotope signal on Quelccaya should not be interpreted as a simple temperature response.

     
    more » « less
  4. Abstract

    This study investigates boreal spring events of Pacific Meridional Mode (PMM) from 1950 to 2022, revealing that cold PMM is more effective in triggering subsequent La Niña compared to warm PMM's induction of following El Niño. This asymmetry stems from the varying origins and sub‐efficacies of PMM groups. The cold PMM is primarily initiated by pre‐existing La Niña, while the warm PMM is comparably activated by pre‐existing El Niño and internal atmospheric dynamics. PMMs initiated by pre‐existing El Niño or La Niña play a crucial role in determining the efficacies of PMMs in triggering subsequent El Niño‐Southern Oscillation (ENSO). The strong discharge of pre‐existing El Niño hampers warm PMM's induction of subsequent El Niño, whereas weak recharge from pre‐existing La Niña enhances the efficacy of cold PMM in inducing subsequent La Niña. Comprehending not only the PMM phase but also its origin is crucial for ENSO research and prediction.

     
    more » « less
  5. Abstract

    This Scientific Briefing presents results from a nearly 10‐year hydrometric and isotope monitoring network across north‐central Costa Rica, a region known as a headwater‐dependent system. This monitoring system has recorded different El Niño and La Niña events and the direct/indirect effects of several hurricane and tropical storm passages. Our results show that El Niño‐Southern Oscillation (ENSO) exerts a significant but predictable impact on rainfall amount anomalies, groundwater level and spring discharge, as evidenced by second‐order water isotope parameters (e.g., line conditioned‐excess or line‐conditioned (LC)‐excess). Sea surface temperature anomaly (El Niño Region 3) is correlated with a reduction in mean annual and cold front rainfall across the headwaters of north‐central Costa Rica. During El Niño conditions, rainfall is substantially reduced (up to 69.2%) during the critical cold fronts period, limiting groundwater recharge and promoting an early onset of minimum baseflow conditions (up to 5 months). In contrast, La Niña is associated with increased rainfall and groundwater recharge (up to 94.7% during active cold front periods). During La Niña, the long‐term mean spring discharge (39 Ls−1) is exceeded 63–80% of the time, whereas, during El Niño, the exceedance time ranges between 26% and 44%. The regional hydroclimatic variability is also imprinted on the hydrogen and oxygen isotopic compositions of meteoric waters. Drier conditions favoured lower LC‐excess in rainfall (−17.3‰) and spring water (−6.5‰), whereas wetter conditions resulted in greater values (rainfall = +17.5‰; spring water = +10.7‰). The lower and higher LC‐excess values in rainfall corresponded to the very strong 2014–2016 El Niño and 2018 La Niña, respectively. During the recent triple‐dip 2021–23 La Niña, LC‐excess exhibited a significant and consistently increasing trend. These findings highlight the importance of combining hydrometric, synoptic and isotopic monitoring as ENSO sentinels to advance our current understanding of ENSO impacts on hydrological systems across the humid Tropics. Such information is critical to constraining the 21st century projections of future water stress across this fragile region.

     
    more » « less