skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UCTNet: Uncertainty-Aware Cross-Modal Transformer Network for Indoor RGB-D Semantic Segmentation
In this paper, we tackle the problem of RGB-D Semantic Segmentation. The key challenges in solving this problem lie in 1) how to extract features from depth sensor data and 2) how to effectively fuse the features extracted from the two modalities. For the first challenge, we found that the depth information obtained from the sensor is not always reliable (e.g. objects with reflective or dark surfaces typically have inaccurate or void sensor readings), and existing methods that extract depth features using ConvNets did not explicitly consider the reliability of depth value at different pixel locations. To tackle this challenge, we propose a novel mechanism, namely Uncertainty-Aware Self-Attention that explicitly controls the information flow from unreliable depth pixels to confident depth pixels during feature extraction. For the second challenge, we propose an effective and scalable fusion module based on Cross-Attention that can adaptively fuse and exchange information between the RGB encoder and depth encoder. Our proposed framework, namely UCTNet, is an encoder-decoder network that naturally incorporates these two key designs for robust and accurate RGB-D Segmentation. Experimental results show that UCTNet outperforms existing works and achieves state-of-the-art performances on two RGB-D Semantic Segmentation benchmarks.  more » « less
Award ID(s):
1931867
PAR ID:
10467720
Author(s) / Creator(s):
;
Editor(s):
Avidan, S.
Publisher / Repository:
Springer
Date Published:
Volume:
13690
ISBN:
978-3-031-20055-7
Page Range / eLocation ID:
20-37
Subject(s) / Keyword(s):
RGBD semantic segmentation uncertainty aware cross modal transformer
Format(s):
Medium: X
Location:
Israel
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Training a semantic segmentation model requires large densely-annotated image datasets that are costly to obtain. Once the training is done, it is also difficult to add new object categories to such segmentation models. In this paper, we tackle the few-shot semantic segmentation problem, which aims to perform image segmentation task on unseen object categories merely based on one or a few support example(s). The key to solving this few-shot segmentation problem lies in effectively utilizing object information from support examples to separate target objects from the background in a query image. While existing methods typically generate object-level representations by averaging local features in support images, we demonstrate that such object representations are typically noisy and less distinguishing. To solve this problem, we design an object representation generator (ORG) module which can effectively aggregate local object features from support image( s) and produce better object-level representation. The ORG module can be embedded into the network and trained end-to-end in a weakly-supervised fashion without extra human annotation. We incorporate this design into a modified encoder-decoder network to present a powerful and efficient framework for few-shot semantic segmentation. Experimental results on the Pascal-VOC and MS-COCO datasets show that our approach achieves better performance compared to existing methods under both one-shot and five-shot settings. 
    more » « less
  2. Transformers have shown great promise in medical image segmentation due to their ability to capture long-range dependencies through self-attention. However, they lack the ability to learn the local (contextual) relations among pixels. Previous works try to overcome this problem by embedding convolutional layers either in the encoder or decoder modules of transformers thus ending up sometimes with inconsistent features. To address this issue, we propose a novel attention-based decoder, namely CASCaded Attention DEcoder (CASCADE), which leverages the multiscale features of hierarchical vision transformers. CASCADE consists of i) an attention gate which fuses features with skip connections and ii) a convolutional attention module that enhances the long-range and local context by suppressing background information. We use a multi-stage feature and loss aggregation framework due to their faster convergence and better performance. Our experiments demonstrate that transformers with CASCADE significantly outperform state-of-the-art CNN- and transformer-based approaches, obtaining up to 5.07% and 6.16% improvements in DICE and mIoU scores, respectively. CASCADE opens new ways of designing better attention-based decoders. 
    more » « less
  3. null (Ed.)
    Training a semantic segmentation model requires large densely-annotated image datasets that are costly to obtain. Once the training is done, it is also difficult to add new ob- ject categories to such segmentation models. In this pa- per, we tackle the few-shot semantic segmentation prob- lem, which aims to perform image segmentation task on un- seen object categories merely based on one or a few sup- port example(s). The key to solving this few-shot segmen- tation problem lies in effectively utilizing object informa- tion from support examples to separate target objects from the background in a query image. While existing meth- ods typically generate object-level representations by av- eraging local features in support images, we demonstrate that such object representations are typically noisy and less distinguishing. To solve this problem, we design an ob- ject representation generator (ORG) module which can ef- fectively aggregate local object features from support im- age(s) and produce better object-level representation. The ORG module can be embedded into the network and trained end-to-end in a weakly-supervised fashion without extra hu- man annotation. We incorporate this design into a modified encoder-decoder network to present a powerful and efficient framework for few-shot semantic segmentation. Experimen- tal results on the Pascal-VOC and MS-COCO datasets show that our approach achieves better performance compared to existing methods under both one-shot and five-shot settings. 
    more » « less
  4. Self-supervised skeleton-based action recognition has attracted more attention in recent years. By utilizing the unlabeled data, more generalizable features can be learned to alleviate the overfitting problem and reduce the demand for massive labeled training data. Inspired by the MAE [1], we propose a spatial-temporal masked autoencoder framework for self-supervised 3D skeleton-based action recognition (SkeletonMAE). Following MAE's masking and reconstruction pipeline, we utilize a skeleton-based encoder-decoder transformer architecture to reconstruct the masked skeleton sequences. A novel masking strategy, named Spatial-Temporal Masking, is introduced in terms of both joint-level and frame-level for the skeleton sequence. This pre-training strategy makes the encoder output generalizable skeleton features with spatial and temporal dependencies. Given the unmasked skeleton sequence, the encoder is fine-tuned for the action recognition task. Extensive ex- periments show that our SkeletonMAE achieves remarkable performance and outperforms the state-of-the-art methods on both NTU RGB+D 60 and NTU RGB+D 120 datasets. 
    more » « less
  5. Scene reconstruction using Monodepth2 (Monocular Depth Inference) which provides depth maps from a single RGB camera, the outputs are filled with noise and inconsistencies. Instance segmentation using a Mask R-CNN (Region Based Convolution Neural Networks) deep model can provide object segmentation results in 2D but lacks 3D information. In this paper we propose to integrate the results of Instance segmentation via Mask R-CNN’s, CAD model Car Shape Alignment, and depth from Monodepth2 together with classical dynamic vision techniques to create a High-level Semantic Model with separability, robustness, consistency and saliency. The model is useful for both virtualized rendering, semantic augmented reality and automatic driving. Experimental results are provided to validate the approach. 
    more » « less