skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Benchtop Experimental Studies of Stick-Slip Mitigation Methods
ABSTRACTDrilling vibrations can cause inefficient drilling and accelerated damage to system components. Therefore, reducing or eliminating such vibrations is a major focus area for natural gas and geothermal drilling applications. One particularly important vibration mode is stick-slip. Stick-slip occurs when the bottom-hole angular velocity starts oscillating while the top hole angular velocity remains relatively constant. This not only causes poor drilling, it is also difficult to detect using surface sensors. In this work, we describe the development and testing of a benchtop drilling system for studying stick-slip dynamics and mitigation. We show how this system can produce stick-slip oscillations. Next, we use this data to formulate a data-driven rock-bit interaction model. This model can be combined with linear systems analysis to predict stick-slip and understand mitigation methods. We describe out instrumentation that enables closed-loop control under simulated communications constraints. We conclude by providing preliminary experimental data on bench-level stick-slip. INTRODUCTIONExploration via autonomous drilling processes for geothermal resources is an important focus area for drilling research. However, to fully realize the clean-energy promise of geothermal energy, key challenges still need to be resolved.Issues arising in the drilling process often originate from a drillstring's increased susceptibility to vibrational oscillations as depths increase. Some examples of drilling vibrations include stick-slip (Navarro-Lopez and Suarez, 2004), bit-bounce (Spanos et al., 1995), and whirl (Jansen, 1991). Torsional oscillations are the focus of this work.Torsional vibrations result in a destructive phenomenon known as stick-slip. Initiated at the bit-rock surface, the drillstring bit experiences large angular velocity oscillations not seen at the surface (Pavone and Desplans, 1994; Besselink et al., 2011; Kessai et al., 2020). Stick-slip results in premature bit wear and drillstring fracture.Stick-slip is a fundamentally nonlinear and unpredictable phenomena. Stick-slip results from the combination of bit-rock interactions and drillstring compliance. As a result, there is a key need for experimental studies of stick-slip dynamics and mitigation.  more » « less
Award ID(s):
1757401
PAR ID:
10467759
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ARMA
Date Published:
Format(s):
Medium: X
Location:
Atlanta, Georgia, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While analysis of glacial seismicity continues to be a widely used method for interpreting glacial processes, the underlying mechanics controlling glacial stick‐slip seismicity remain speculative. Here, we report on laboratory shear experiments of debris‐laden ice slid over a bedrock asperity under carefully controlled conditions. By modifying the elastic loading stiffness, we generated the first laboratory icequakes. Our work represents the first comprehensive lab observations of unstable ice‐slip events and replicates several seismological field observations of glacier slip, such as slip velocity, stress drop, and the relationship between stress drop and recurrence interval. We also observe that stick‐slips initiate above a critical driving velocity and that stress drop magnitude decreases with further increases in velocity, consistent with friction theory and rock‐on‐rock friction laboratory experiments. Our results demonstrate that glacier slip behavior can be accurately predicted by the constitutive rate‐and‐state friction laws that were developed for rock friction. 
    more » « less
  2. This chapter documents the methods used for shipboard measurements and analyses during International Ocean Discovery Program (IODP) Expedition 358. We conducted riser drilling from 2887.3 to 3262.5 meters below seafloor (mbsf) at Site C0002 (see Table T1 in the Expedition 358 summary chapter [Tobin et al., 2020a]) as a continuation of riser drilling in Hole C0002F begun during Integrated Ocean Drilling Program Expedition 326 (Expedition 326 Scientists, 2011) and deepened during Integrated Ocean Drilling Program Expeditions 338 and 348 (Strasser et al., 2014b; Tobin et al., 2015b). Please note that the top of Hole C0002Q begins from the top of the window cut into the Hole C0002P casing. Previous Integrated Ocean Drilling Program work at Site C0002 included logging and coring during Integrated Ocean Drilling Program Expeditions 314 (logging while drilling [LWD]), 315 (riserless coring), 332 (LWD and long-term monitoring observatory installation), 338 (riser drilling and riserless coring), and 348 (riser drilling) (Expedition 314 Scientists, 2009; Expedition 315 Scientists, 2009b; Expedition 332 Scientists, 2011; Strasser et al., 2014b; Tobin et al., 2015b). Riserless contingency drilling was also conducted at Site C0024 (LWD and coring) near the deformation front of the Nankai accretionary prism off the Kii Peninsula and at Site C0025 (coring only) in the Kumano fore-arc basin. Riser operations began with connection of the riser to the Hole C0002F wellhead, sidetrack drilling out the cement shoes from 2798 to 2966 mbsf to establish a new hole, and then running a cement bond log to check the integrity of the Hole C0002P casing-formation bonding. A new sidetrack was established parallel to previous Hole C0002P drilling and designated as Hole C0002Q to distinguish it from the overlapping interval in Hole C0002P. Several new kick offs were established (Holes C0002R–C0002T) in attempts to overcome problems drilling to the target depth and then, in the end, to collect core samples. During riser operations, we collected drilling mud, mud gas, cuttings, downhole logs, core samples, and drilling parameters (including mud flow rate, weight on bit [WOB], torque on bit, and downhole pressure, among others). Gas from drilling mud was analyzed in near–real time in a special mud-gas monitoring laboratory (MGML) and was sampled for further postcruise research. Continuous LWD data were transmitted on board and displayed in real time for QC and for initial assessment of borehole environment and formation properties. Recorded-mode LWD data provided higher spatial sampling of downhole parameters and conditions. Cuttings were sampled for standard shipboard analyses and shore-based research. Small-diameter rotary core barrel (SD-RCB; 8½ inch) coring in Hole C0002T provided only minimal core. Riserless coring at Sites C0024 and C0025 with a 10⅝ inch rotary core barrel (RCB) and hydraulic piston coring system (HPCS)/extended punch coring system (EPCS)/extended shoe coring system (ESCS) bottom-hole assembly (BHA) provided most of the core used for standard shipboard and shore-based research. 
    more » « less
  3. Abstract Rock friction tests have made profound contributions to our understanding of earthquake processes. Most rock friction tests focused on fault strength evolution during velocity steps or at specific slip rates and the characteristics during stick‐slip events such as dynamic rupture propagation and the transition from stable sliding to instability, with little attention paid to the transient acceleration and deceleration periods. Here, we present Westerly Granite fault friction test results using a unique pneumatically powered apparatus with high acceleration of up to 50 g, focusing on the transient stages of fast fault acceleration and deceleration during both high‐speed sliding and stick‐slip events. Our data demonstrates the dominating velocity‐weakening behavior at transient stages of fault acceleration and deceleration, with a 1/V dependence for peak friction and deceleration lobe consistent with the flash‐heating model but with the acceleration lobe consistently deviating from the 1/V dependence. Our analysis of velocity‐dependent friction between dynamic rupture events, stick‐slips, and high‐speed friction tests reveals the significance of high acceleration in influencing transient fault weakening during dynamic weakening. We further demonstrate that the deviation of the friction‐velocity curve from the 1/V trend during fault acceleration is associated with the contribution of the dynamic rupturing process during the initiation of fault slip. 
    more » « less
  4. Basal slip along glaciers and ice streams can be significantly modified by external time-dependent forcing, although it is not clear why some systems are more sensitive to tidal stresses. We have conducted a series of laboratory experiments to explore the effect of time varying load point velocity on ice-on-rock friction. Varying the load point velocity induces shear stress forcing, making this an analogous simulation of aspects of ice stream tidal modulation. Ambient pressure, double-direct shear experiments were conducted in a cryogenic servo-controlled biaxial deformation apparatus at temperatures between −2°C and −16°C. In addition to a background, median velocity (1 and 10 μm/s), a sinusoidal velocity was applied to the central sliding sample over a range of periods and amplitudes. Normal stress was held constant over each run (0.1, 0.5 or 1 MPa) and the shear stress was measured. Over the range of parameters studied, the full spectrum of slip behavior from creeping to slow-slip to stick-slip was observed, similar to the diversity of sliding styles observed in Antarctic and Greenland ice streams. Under conditions in which the amplitude of oscillation is equal to the median velocity, significant healing occurs as velocity approaches zero, causing a high-amplitude change in friction. The amplitude of the event increases with increasing period (i.e. hold time). At high normal stress, velocity oscillations force an otherwise stable system to behave unstably, with consistently-timed events during every cycle. Rate-state friction parameters determined from velocity steps show that the ice-rock interface is velocity strengthening. A companion paper describes a method of analyzing the oscillatory data directly. Forward modeling of a sinusoidally-driven slider block, using rate-and-state dependent friction formulation and experimentally derived parameters, successfully predicts the experimental output in all but a few cases. 
    more » « less
  5. The multipurpose vessel MMA Valour was used as the drilling platform throughout Expedition 389. At all sites, dynamic positioning was used to provide accurate positions throughout operations and water depth was established using a Sound Velocity Profiler (SVP) placed on the top of the PROD5 drilling system. For more detail on acquisition methods, see Introduction in the Expedition 389 methods chapter (Webster et al., 2025a). Summary operational information for Hole M0098A is provided in Table T1. All times stated are in Hawaii Standard Time (HST). 
    more » « less