skip to main content


This content will become publicly available on June 25, 2024

Title: Benchtop Experimental Studies of Stick-Slip Mitigation Methods
ABSTRACT

Drilling vibrations can cause inefficient drilling and accelerated damage to system components. Therefore, reducing or eliminating such vibrations is a major focus area for natural gas and geothermal drilling applications. One particularly important vibration mode is stick-slip. Stick-slip occurs when the bottom-hole angular velocity starts oscillating while the top hole angular velocity remains relatively constant. This not only causes poor drilling, it is also difficult to detect using surface sensors. In this work, we describe the development and testing of a benchtop drilling system for studying stick-slip dynamics and mitigation. We show how this system can produce stick-slip oscillations. Next, we use this data to formulate a data-driven rock-bit interaction model. This model can be combined with linear systems analysis to predict stick-slip and understand mitigation methods. We describe out instrumentation that enables closed-loop control under simulated communications constraints. We conclude by providing preliminary experimental data on bench-level stick-slip.

INTRODUCTION

Exploration via autonomous drilling processes for geothermal resources is an important focus area for drilling research. However, to fully realize the clean-energy promise of geothermal energy, key challenges still need to be resolved.

Issues arising in the drilling process often originate from a drillstring's increased susceptibility to vibrational oscillations as depths increase. Some examples of drilling vibrations include stick-slip (Navarro-Lopez and Suarez, 2004), bit-bounce (Spanos et al., 1995), and whirl (Jansen, 1991). Torsional oscillations are the focus of this work.

Torsional vibrations result in a destructive phenomenon known as stick-slip. Initiated at the bit-rock surface, the drillstring bit experiences large angular velocity oscillations not seen at the surface (Pavone and Desplans, 1994; Besselink et al., 2011; Kessai et al., 2020). Stick-slip results in premature bit wear and drillstring fracture.

Stick-slip is a fundamentally nonlinear and unpredictable phenomena. Stick-slip results from the combination of bit-rock interactions and drillstring compliance. As a result, there is a key need for experimental studies of stick-slip dynamics and mitigation.

 
more » « less
Award ID(s):
1757401
NSF-PAR ID:
10467759
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ARMA
Date Published:
Format(s):
Medium: X
Location:
Atlanta, Georgia, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The multiexpedition Integrated Ocean Drilling Program/International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) was designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. Overall NanTroSEIZE scientific objectives include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. Expedition 380 was the twelfth NanTroSEIZE expedition since 2007. Refer to Kopf et al. (2017) for a comprehensive summary of objectives, operations, and results during the first 11 expeditions. Expedition 380 focused on one primary objective: riserless deployment of a long-term borehole monitoring system (LTBMS) in Hole C0006G in the overriding plate at the toe of the Nankai accretionary prism. The LTBMS installed in Hole C0006G incorporates multilevel pore pressure sensing and a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Similar previous LTBMS installations were completed farther upslope at IODP Sites C0002 and C0010. The ~35 km trench-normal transect of three LTBMS installations will provide monitoring within and above regions of contrasting behavior in the megasplay fault and the plate boundary as a whole, including a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (the Expedition 380 installation at Site C0006). In combination, this suite of observatories has the potential to capture stress and deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across the transect from near-trench to the seismogenic zone. Expedition 380 achieved its primary scientific and operational goal with successful installation of the LTBMS to a total depth of 457 m below seafloor in Hole C0006G. The installation was conducted in considerably less time than budgeted, partly because the Kuroshio Current had shifted away from the NanTroSEIZE area after 10 y of seriously affecting D/V Chikyu NanTroSEIZE operations. After Expedition 380, the LTBMS was to be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis in March 2018 using the remotely operated vehicle Hyper-Dolphin from the Japan Agency for Marine-Earth Science and Technology R/V Shinsei Maru. 
    more » « less
  2. null (Ed.)
    The multiexpedition Integrated Ocean Drilling Program/International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) project was designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. Overall NanTroSEIZE scientific objectives include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. Expedition 380 was the twelfth NanTroSEIZE expedition since 2007. Refer to Kopf et al. (2017) for a comprehensive summary of objectives, operations, and results during the first 11 expeditions. Expedition 380 focused on one primary objective: riserless deployment of a long-term borehole monitoring system (LTBMS) in Hole C0006G in the overriding plate at the toe of the Nankai accretionary prism. The LTBMS installed in Hole C0006G incorporates multilevel pore-pressure sensing and a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Similar previous LTBMS installations were completed farther upslope at IODP Sites C0002 and C0010. The ~35 km trench–normal transect of three LTBMS installations will provide monitoring within and above regions of contrasting behavior in the megasplay fault and the plate boundary as a whole, including a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (the Expedition 380 installation at Site C0006). In combination, this suite of observatories has the potential to capture stress and deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across the transect from near-trench to the seismogenic zone. Expedition 380 achieved its primary scientific and operational goal with successful installation of the LTBMS to a total depth of 457 m below seafloor in Hole C0006G. The installation was conducted in considerably less time than budgeted, partly because the Kuroshio Current had shifted away from the NanTroSEIZE area after 10 y of seriously affecting D/V Chikyu NanTroSEIZE operations. After Expedition 380, the LTBMS was successfully connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) in March 2018 using the remotely operated vehicle Hyper-Dolphin from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) R/V Shinsei Maru. 
    more » « less
  3. Abstract

    Rate and state frictional parameters are typically determined using two types of experimental protocols: velocity steps and slide‐hold‐slide events. Here we take a new approach by examining the frictional response to controlled, harmonic oscillations in load point velocity. We present a Matlab graphical user interface software package, called RSFitOSC, that allows users to easily determine frictional parameters by fitting oscillation events using the rate and state friction equations. We apply our new methods to a set of ice‐rock friction experiments conducted over a temperature range of −16.4°C to −2°C, and described in a companion paper: McCarthy et al. (2021,https://doi.org/10.1002/essoar.10509831.110.1002/essoar.10509831.1). Values of the frictional stability parameter (ab) determined from oscillations reveal dominantly velocity‐weakening behavior across the entire range of experimental conditions. However, values of (a–b) determined from velocity steps in the same experiments yield velocity‐strengthening behavior. We also show that the elastic stiffness of the ice‐rock system depends on the temperature, and is unlikely to be explained by changes in the elastic properties of ice. Load point velocity oscillations induce oscillations in applied shear stress. Many natural fault systems exhibit slip behaviors that depend on harmonic oscillations in applied tidal stresses. Our new method provides a way to study how frictional properties directly depend on parameters relevant to tidal forcing, and how oscillatory loading must be considered when extracting friction parameters.

     
    more » « less
  4. Basal slip along glaciers and ice streams can be significantly modified by external time-dependent forcing, although it is not clear why some systems are more sensitive to tidal stresses. We have conducted a series of laboratory experiments to explore the effect of time varying load point velocity on ice-on-rock friction. Varying the load point velocity induces shear stress forcing, making this an analogous simulation of aspects of ice stream tidal modulation. Ambient pressure, double-direct shear experiments were conducted in a cryogenic servo-controlled biaxial deformation apparatus at temperatures between −2°C and −16°C. In addition to a background, median velocity (1 and 10 μm/s), a sinusoidal velocity was applied to the central sliding sample over a range of periods and amplitudes. Normal stress was held constant over each run (0.1, 0.5 or 1 MPa) and the shear stress was measured. Over the range of parameters studied, the full spectrum of slip behavior from creeping to slow-slip to stick-slip was observed, similar to the diversity of sliding styles observed in Antarctic and Greenland ice streams. Under conditions in which the amplitude of oscillation is equal to the median velocity, significant healing occurs as velocity approaches zero, causing a high-amplitude change in friction. The amplitude of the event increases with increasing period (i.e. hold time). At high normal stress, velocity oscillations force an otherwise stable system to behave unstably, with consistently-timed events during every cycle. Rate-state friction parameters determined from velocity steps show that the ice-rock interface is velocity strengthening. A companion paper describes a method of analyzing the oscillatory data directly. Forward modeling of a sinusoidally-driven slider block, using rate-and-state dependent friction formulation and experimentally derived parameters, successfully predicts the experimental output in all but a few cases. 
    more » « less
  5. Abstract

    The methods for reducing the observations from the 150-foot tower telescope on Mt. Wilson are reviewed, and a new method for determining the poleward and rotational velocity deviations is described and applied. The flows we study are smaller than global and change with the solar cycle, so we describe them as poleward and rotational deviations rather than meridional circulation when we discuss solar surface flows. Due to a calibration problem with the data prior to 1983, only observations between 1983 and 2013 are presented at this time. After subtraction of latitude-dependent averages over the 30-year period of observation, the residual deviations in both the poleward and the rotational velocity are well synchronized and correspond to what is widely recognized as torsional oscillations. Both flow components need to be included in any model that replicates the torsional oscillations.

     
    more » « less