The experiment-centric pedagogy (ECP) teaching approach is a less cumbersome way of introducing core and fundamental topics in STEM through relevant practical and hands-on sessions that are carefully incorporated into lectures. The philosophy of ECP is that students learn better by doing. Hence, it promotes the practical implementation of fundamental theories in STEM fields by using inexpensive basic elements to develop portable but extremely effective units for use by these students. The portability of these units enables these students to conduct these experiments in the comfort of their homes, while their low cost makes it highly affordable. With carefully curated experiments across different departments such as Electrical, Civil, Physics, and Computer Science, ECP has been able to develop informative experiments to calculate impedance and transient current in RLC circuits buttressing the concept of ohm’s law in electrical engineering and physics, combinational and sequential circuits such as adders, multiplexer, subtractors, decoders, counters, and shift-registers in computer Science. ECP also implemented data acquisition systems alongside experiments to demonstrate Hooke’s law with respect to stress/strain on a flat metal bar and measurement of the pressure of a thin-walled cylindrical vessel in civil engineering. These experiments help students develop a good understanding of these concepts, which are the building blocks of their respective fields. Early results of ECP have shown that there has been a significant improvement in students' interest in these STEM courses.
more »
« less
Experimental Centric Pedagogy as Scaffolding for a Better Understanding of Calculus in the Mathematics Discipline
The field of calculus is critical to the success and advancement of many Engineering and statistical systems. Calculus provides ways of analyzing transient quantities including data collected from sensors, determining area under a curve, fitting a line for predictive analytics, and price changes in the stock market. It is also core to the understanding of numerous probability distributions in statistics hence, a fundamental knowledge of this concept is crucial for a successful career in STEM. The project would abstract the complexities involved in the learning of calculus from students by providing simple yet relevant experiments that would boost the students interest in this field. The concepts of differentiation and integration would be practically demonstrated to students through affordable and portable circuits. The project would employ readily available circuit elements like inductors, capacitors, and Op Amps to demonstrate integration and differentiation to the students. By employing cheap components and portable circuits, students can afford and carry out these experiments in the classroom and at the comfort of their homes. These experiments will also enable the students appreciate the relevance of these concepts in the field of Engineering, Mathematics and other STEM fields.
more »
« less
- Award ID(s):
- 1915614
- PAR ID:
- 10467772
- Publisher / Repository:
- American Society for Engineering Education, 2023. https://sftp.asee.org/43567
- Date Published:
- Subject(s) / Keyword(s):
- Experimental Centric Pedagogy, Calculus, Hooke’s law, velocity, acceleration and concepts of differentiation and integration
- Format(s):
- Medium: X
- Location:
- https://sftp.asee.org/43567
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Norwich University, the oldest Senior Military College in the nation and the first private U.S. institution to teach engineering, has a residential program for approximately 2,100 primarily undergraduate students in both the Corps of Cadets and civilian lifestyles. Norwich secured a National Science Foundation S-STEM award in the beginning of 2020 to develop a program to attract and retain highly talented, low-income students in STEM. One of the aims of the project was to support students who enter college with less experience in mathematics as these students were significantly less likely to graduate with a STEM degree. In the fall of 2020, as a result of the S-STEM award, the mathematics department offered a pilot corequisite calculus course to STEM majors requiring calculus their first semester but placed into precalculus by the mathematics departmental placement test. The corequisite calculus course includes content from precalculus into a one semester calculus course that meets daily for 6 contact hours rather than a standard 4 credit hour calculus course. The Norwich University Civil, Electrical and Computer, and Mechanical Engineering programs are accredited by the Engineering Accreditation Commission of ABET, placing restrictions on the 8-semester engineering degree pathway. The added credits to the first semester corequisite calculus course fit the constraints of the first semester engineering course load and this course has enabled engineering students that place into precalculus to complete an on-time degree plan without taking summer courses. The corequisite course has been approved by the university curriculum committee and is a regular offering at the institution. The initial offering of the corequisite course occurred during the COVID pandemic necessitating the use of additional instructional technology. There was also an increase in low stakes assessments to encourage students to engage in the material. The added credits also increased the regularity of student interacting with calculus. Since the implementation of this pilot course, there have been several similar changes in other courses required by engineering majors. The pilot corequisite course has become institutionalized and even is now scaling, with the engineering department requesting the course to be offered each semester to benefit students who are out of sync with the intended curriculum pathway. This project examines how the corequisite calculus course may have influenced changes in the general education courses and engineering first year sequence. Outcome harvesting as well as process tracing are used to determine the strength of evidence linking the corequisite course to institutional change. Qualitative and quantitative data will be examined as well to understand how the S-STEM award contributed to breakdown of the resistance to curriculum change and the readiness to implement and scale corequisite courses in other areas. It is important to understand the mechanisms used for building capacity at the institution to transform STEM education in higher educationmore » « less
-
ABSTRACT Engineering has emerged as a promising context for STEM integration in K‐12 schools. In the previous decade, the field has seen an increase in curricular resources and pedagogical approaches that invite students to utilize mathematics and science as they engage in engineering practices. This Innovation to Practice paper highlights one effort to meaningfully integrate mathematics and science through engineering in middle school classrooms. The STEM‐ID engineering course sequence consists of three 18‐week middle school engineering courses. Each of the 6th, 7th, and 8th grade courses integrate science and math with engineering design, enabling students to explore and practice foundational math and science skills in a low‐risk, non‐high‐stakes‐tested environment. This Innovation to Practice paper provides illustrative examples of STEM‐integration through the STEM‐ID curricula, focusing on four key areas: data analysis, measurement, experimental design, and force and motion concepts. Drawing on our project's implementation data, we highlight illustrative examples of STEM integration, in practice, and lessons learned by educators and researchers involved in the project.more » « less
-
Project Connect (PC) is an immersive professional development program designed to increase the number of students from underrepresented groups in engineering who pursue careers in the microwave engineering and related fields. Most of the professionals in this area have been educated in the electrical engineering (EE) field with a focus on applied electromagnetics, antenna theory and communication systems. The electromagnetics class in a typical electrical engineering undergraduate program involves vector calculus and abstract concepts without, in many cases, the right facilities or equipment to aid experiential learning. This leaves most students perplexed and disinterested in the field, while they do not fully realize the wealth of opportunities that lie beyond this course. This problem is even more pronounced for students from underrepresented groups as they may have less exposure to the professional and academic opportunities in microwave engineering. Project Connect was birthed out of the need to keep these students engaged in the field by exposing them to a broader view of the field and the impact that they can have on technology. Each year, the PC program is housed within the Institute of Electrical and Electronics Engineers (IEEE) International Microwave Symposium (IMS). IMS is the flagship conference of the Microwave Theory and Techniques (MTT) Society and is based in North America. The typical attendance at the conference is over 9,000 and there is an associated industry exhibition with more than 700 companies. PC hosts approximately two dozen underrepresented students for four days of community building and professional development, most of whom are juniors or seniors in undergraduate programs, along with a smaller cohort of first-year students in graduate programs. The groups, consistently mixed in gender and ethnicity, get an opportunity for direct interaction with fellow PC participants, practitioners and academics, and leaders in the field and of the MTT society. This interaction is central to the success of the program, and the integration with IMS is representative of the important role that professional societies can play in diversifying STEM participation [1]. PC has been in operation since 2014 [2-5] and is sponsored jointly by the National Science Foundation and the IMS Organizing Committee.more » « less
-
Problem-solving is a critical skill in the workplace, but recent college graduates are often deficient in problem-solving skills. Introductory STEM courses present engineering students with well-structured problems with single-path solutions that do not prepare students with the problem-solving skills they will need to solve complex problems within authentic engineering contexts. When presented with complex problems in authentic contexts, engineering students find it difficult to transfer the scientific knowledge learned in their STEM courses to solve these integrated and ill structured problems. By integrating physics laboratories with engineering design problems, students are taught to apply physics principles to solve ill-structured and complex engineering problems. The integration of engineering design processes to physics labs is meant to help students transfer physics learning to engineering problems, as well as to transfer the design skills learned in their engineering courses to the physics lab. We hypothesize this integration will help students become better problem solvers when they go out to industry after graduation. The purpose of this study is to examine how students transfer their understanding of physics concepts to solve ill-structured engineering problems by means of an engineering design project in a physics laboratory. We use a case-study methodology to examine two cases and analyze the cases using a lens of co-regulated learning and transfer between physics and engineering contexts. Observations were conducted using transfer lenses. That is, we observed groups during the physics labs for evidence of transfer. The research question for this study was, to what extent do students relate physics concepts with concepts from other materials (classes) through an engineering design project incorporated in a physics laboratory? Teams were observed over the course of 6 weeks as they completed the second design challenge. The cases presented in this study were selected using observations from the lab instructors of the team’s work in the first design project. Two teams, one who performed well, and one that performed poorly, were selected to be observed to provide insight on how students use physics concepts to engage in the design process. The second design challenge asked students to design an eco-friendly way of delivering packages of food to an island located in the middle of the river, which is home to critically endangered species. They are given constraints that the solution cannot disrupt the habitat in any way, nor can the animals come into contact directly with humans or loud noises. Preliminary results indicate that both teams successfully demonstrated transfer between physics and engineering contexts, and integrated physics concepts from multiple labs to complete the design project. Teams that struggle seem to be less connected with the design process at the beginning of the project and are less organized. In contrast, teams that are successful demonstrate greater co-regulated learning (communication, reflection, etc.) and focus on making connections between the physics concepts and principles of engineering design from their engineering course work.more » « less
An official website of the United States government

