skip to main content


Title: Stochastic Differentially Private and Fair Learning
Machine learning models are increasingly used in high-stakes decision-making systems. In such applications, a major concern is that these models sometimes discriminate against certain demographic groups such as individuals with certain race, gender, or age. Another major concern in these applications is the violation of the privacy of users. While fair learning algorithms have been developed to mitigate discrimination issues, these algorithms can still leak sensitive information, such as individuals’ health or financial records. Utilizing the notion of differential privacy (DP), prior works aimed at developing learning algorithms that are both private and fair. However, existing algorithms for DP fair learning are either not guaranteed to converge or require full batch of data in each iteration of the algorithm to converge. In this paper, we provide the first stochastic differentially private algorithm for fair learning that is guaranteed to converge. Here, the term “stochastic" refers to the fact that our proposed algorithm converges even when minibatches of data are used at each iteration (i.e. stochastic optimization). Our framework is flexible enough to permit different fairness notions, including demographic parity and equalized odds. In addition, our algorithm can be applied to non-binary classification tasks with multiple (non-binary) sensitive attributes. As a byproduct of our convergence analysis, we provide the first utility guarantee for a DP algorithm for solving nonconvex-strongly concave min-max problems. Our numerical experiments show that the proposed algorithm consistently offers significant performance gains over the state-of-the-art baselines, and can be applied to larger scale problems with non-binary target/sensitive attributes.  more » « less
Award ID(s):
2144985
NSF-PAR ID:
10467836
Author(s) / Creator(s):
;
Publisher / Repository:
The Eleventh International Conference on Learning Representations
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the success of large-scale empirical risk minimization (ERM) at achieving high accuracy across a variety of machine learning tasks, fair ERM is hindered by the incompatibility of fairness constraints with stochastic optimization. We consider the problem of fair classification with discrete sensitive attributes and potentially large models and data sets, requiring stochastic solvers. Existing in-processing fairness algorithms are either impractical in the large-scale setting because they require large batches of data at each iteration or they are not guaranteed to converge. In this paper, we develop the first stochastic in-processing fairness algorithm with guaranteed convergence. For demographic parity, equalized odds, and equal opportunity notions of fairness, we provide slight variations of our algorithm–called FERMI–and prove that each of these variations converges in stochastic optimization with any batch size. Empirically, we show that FERMI is amenable to stochastic solvers with multiple (non-binary) sensitive attributes and non-binary targets, performing well even with minibatch size as small as one. Extensive experiments show that FERMI achieves the most favorable tradeoffs between fairness violation and test accuracy across all tested setups compared with state-of-the-art baselines for demographic parity, equalized odds, equal opportunity. These benefits are especially significant with small batch sizes and for non-binary classification with large number of sensitive attributes, making FERMI a practical, scalable fairness algorithm. The code for all of the experiments in this paper is available at: https://github.com/optimization-for-data-driven-science/FERMI. 
    more » « less
  2. Data sets and statistics about groups of individuals are increasingly collected and released, feeding many optimization and learning algorithms. In many cases, the released data contain sensitive information whose privacy is strictly regulated. For example, in the U.S., the census data is regulated under Title 13, which requires that no individual be identified from any data released by the Census Bureau. In Europe, data release is regulated according to the General Data Protection Regulation, which addresses the control and transfer of personal data. Differential privacy has emerged as the de-facto standard to protect data privacy. In a nutshell, differentially private algorithms protect an individual’s data by injecting random noise into the output of a computation that involves such data. While this process ensures privacy, it also impacts the quality of data analysis, and, when private data sets are used as inputs to complex machine learning or optimization tasks, they may produce results that are fundamentally different from those obtained on the original data and even rise unintended bias and fairness concerns. In this talk, I will first focus on the challenge of releasing privacy-preserving data sets for complex data analysis tasks. I will introduce the notion of Constrained-based Differential Privacy (C-DP), which allows casting the data release problem to an optimization problem whose goal is to preserve the salient features of the original data. I will review several applications of C-DP in the context of very large hierarchical census data, data streams, energy systems, and in the design of federated data-sharing protocols. Next, I will discuss how errors induced by differential privacy algorithms may propagate within a decision problem causing biases and fairness issues. This is particularly important as privacy-preserving data is often used for critical decision processes, including the allocation of funds and benefits to states and jurisdictions, which ideally should be fair and unbiased. Finally, I will conclude with a roadmap to future work and some open questions. 
    more » « less
  3. null (Ed.)
    The performance of private gradient-based optimization algorithms is highly dependent on the choice of step size (or learning rate) which often requires non-trivial amount of tuning. In this paper, we introduce a stochastic variant of classic backtracking line search algorithm that satisfies Renyi differential privacy. Specifically, the proposed algorithm adaptively chooses the step size satisfying the the Armijo condition (with high probability) using noisy gradients and function estimates. Furthermore, to improve the probability with which the chosen step size satisfies the condition, it adjusts per-iteration privacy budget during runtime according to the reliability of noisy gradient. A naive implementation of the backtracking search algorithm may end up using unacceptably large privacy budget as the ability of adaptive step size selection comes at the cost of extra function evaluations. The proposed algorithm avoids this problem by using the sparse vector technique combined with the recent privacy amplification lemma. We also introduce a privacy budget adaptation strategy in which the algorithm adaptively increases the budget when it detects that directions pointed by consecutive gradients are drastically different. Extensive experiments on both convex and non-convex problems show that the adaptively chosen step sizes allow the proposed algorithm to efficiently use the privacy budget and show competitive performance against existing private optimizers. 
    more » « less
  4. Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy. 
    more » « less
  5. Motivated by settings in which predictive models may be required to be non-discriminatory with respect to certain attributes (such as race), but even collecting the sensitive attribute may be forbidden or restricted, we initiate the study of fair learning under the constraint of differential privacy. Our first algorithm is a private implementation of the equalized odds post-processing approach of (Hardt et al., 2016). This algorithm is appealingly simple, but must be able to use protected group membership explicitly at test time, which can be viewed as a form of “disparate treatment”. Our second algorithm is a differentially private version of the oracle-efficient in-processing approach of (Agarwal et al., 2018) which is more complex but need not have access to protected group membership at test time. We identify new tradeoffs between fairness, accuracy, and privacy that emerge only when requiring all three properties, and show that these tradeoffs can be milder if group membership may be used at test time. We conclude with a brief experimental evaluation. 
    more » « less