skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can amino acid racemization be utilized for fish age validation?
We investigated the relationship between aspartic acid d:l ratios and otolith-derived age estimates in Gulf of Mexico red snapper, Lutjanus campechanus (ages 1–26 years; R2 = 0.89) and Caribbean yellowtail snapper, Ocyurus chrysurus (ages 2–17 years; R2 = 0.84). The estimated racemization rate was 0.61 × 10−3 year−1for red snapper and 1.28 × 10−3 year−1for yellowtail snapper, reflecting temperature differences between study regions. Mean jackknifed error in ages predicted from aspartic acid d:l was 1.70 ± 0.39 years for red snapper and 1.57 ± 0.41 years for yellowtail snapper. Results suggest amino acid racemization may be an effective tool for direct age estimation and potentially age validation in fishes.  more » « less
Award ID(s):
1855381
PAR ID:
10467929
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Canadian Science Publishing
Date Published:
Journal Name:
Canadian Journal of Fisheries and Aquatic Sciences
Volume:
80
Issue:
3
ISSN:
0706-652X
Page Range / eLocation ID:
642 to 647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We report the results of amino acid racemization (AAR) analyses of aspartic acid (Asp)and glutamic acid (Glu) in the planktic Neogloboquadrina pachyderma, and the benthic Cibicidoides wuellerstorfi, foraminifera species collected from sediment cores from the Arctic Ocean. The cores were retrieved at various deep-sea sites of the Arctic, which cover a large geographical area from the Greenland and Iceland seas (GIS) to the Alpha and Lomonosov ridges in the central Arctic Ocean. Age models for the investigated sediments were developed by multiple dating and correlation techniques, including oxygen isotope stratigraphy, magnetostratigraphy, biostratigraphy, lithostratigraphy, and cyclostratigraphy. The extent of racemization (D/L values) was determined on 95 samples (1028 subsamples) and shows a progressive increase downcore for both foraminifera species. Differences in the rates of racemization between the species were established by analysing specimens of both species from the same stratigraphic levels (n=21). Aspartic acid (Asp) and glutamic acid (Glu) racemize on average 16 ± 2 % and 23 ± 3 % faster, respectively, in C. wuellerstorfi than in N. pachyderma. The D/L values increase with sample age in nearly all cases, with a trend that follows a simple power function. Scatter around least-squares regression fits are larger for samples from the central Arctic Ocean than for those from the Nordic Seas. Calibrating the rate of racemization in C. wuellerstorfi using independently dated samples from the Greenland and Iceland seas for the past 400 ka enables estimation of sample ages from the central Arctic Ocean, where bottom water temperatures are presently relatively similar. The resulting ages are older than expected when considering the existing age models for the central Arctic Ocean cores. These results confirm that the differences are not due to taxonomic effects on AAR and further warrant a critical evaluation of existing Arctic Ocean age models. A better understanding of temperature histories at the investigated sites, and other environmental factors that may influence racemization rates in central Arctic Ocean sediments, is also needed. 
    more » « less
  2. Abstract Ice-sheet volume during Marine Isotope Stage (MIS) 3 (57–29 ka) is controversial. Several recent studies have proposed that the Greenland Ice Sheet was smaller during MIS 3 than it is today based on radiocarbon ages of molluscan bivalve shells reworked into sedimentary deposits adjacent to the present ice margin. Such a result contrasts with available records of MIS 3 climate, ice volume, and sea level. We revisited a site previously interpreted as containing evidence for smaller than present ice during MIS 3. We collected marine bivalve shells and combined progressive acid dissolution in preparation for radiocarbon dating with new-generation amino acid analysis, which focuses on aspartic acid racemization. Our results suggest that contamination by young carbon yields finite radiocarbon ages despite bivalve shells likely dating to MIS 5e (∼125 ka) or even older. This result should be further tested, which could be accomplished with additional studies of this kind in combination with ice-sheet modeling and additional paleoclimate data generated from adjacent seas. 
    more » « less
  3. Abstract. Amino acid racemization (AAR) geochronology is a powerful tool for datingQuaternary marine sediments across the globe, yet its application to ArcticOcean sediments has been limited. Anomalous rates of AAR in foraminiferafrom the central Arctic were reported in previously published studies,indicating that either the rate of racemization is higher in this area, orinaccurate age models were used to constrain the sediment ages. This studyinvestigates racemization rates in foraminifera from three well-datedsediment cores taken from the Yermak Plateau during the 2015 TRANSSIZ (TRansitions in the Arctic Seasonal Sea Ice Zone) expedition on RV Polarstern. D and L isomers of the amino acids asparticacid (Asp) and glutamic acid (Glu) were separated in samples of theplanktic foraminifer Neogloboquadrina pachyderma and the benthic species Cassidulina neoteretis to quantify the extent ofracemization. In total, 241 subsamples were analysed, extending back tomarine oxygen isotope stage (MIS) 7. Two previously published powerfunctions, which relate the extent of racemization of Asp and Glu inforaminifera to sample age are revisited, and a comparison is made betweenthe ages predicted by these calibrated age equations and independentgeochronological constraints available for the cores. Our analyses reveal anexcellent match between ages predicted by a global compilation ofracemization rates for N. pachyderma and confirm that a proposed Arctic-specificcalibration curve is not applicable at the Yermak Plateau. These resultsgenerally support the rates of AAR determined for other cold bottom watersites and further highlight the anomalous nature of the purportedly highrate of racemization indicated by previous analyses of central Arcticsediments. 
    more » « less
  4. Abstract As sediment is transported through river corridors, it typically spends more time in storage than transport, and as a result, sediment delivery timescales are controlled by the duration of storage. Present understanding of storage timescales is largely derived from models or from field studies covering relatively short (≤102 year) time spans. Here we quantify the storage time distribution for a 17 km length of Powder River in Montana, USA by determining the age distribution of eroded sediment. Our approach integrates surveyed cross‐sections, analysis of historical aerial imagery, aerial LiDAR, geomorphic mapping, and age control provided by optically stimulated luminescence (OSL) and dendrochronology. Sediment eroded by Powder River from 1998 to 2013 ranges from a few years to ∼5,000 years in age; ages are exponentially distributed (r2 = 0.78; Anderson‐Darlingpvalue 0.003). Eroded sediment is derived from Powder River's meander belt (∼900 m wide), which is only 1.25 times its meander wavelength, a value reflecting valley confinement rather than free meandering. The mean storage time, 824 years (95% C.I. 610–1030 years), is similar to the time required to rework deposits of Powder River's meander belt based on an average meander migration rate of ∼1 m/yr, implying that storage time distributions of confined meandering rivers can be quantified from remotely sensed estimates of meander belt width and channel migration rates. Heavy‐tailed storage time distributions, frequently cited from physical and numerical modeling studies, may be restricted to unconfined meandering rivers. 
    more » « less
  5. Modern human behavioral innovations from the Middle Stone Age (MSA) include the earliest indicators of full coastal adaptation evidenced by shell middens, yet many MSA middens remain poorly dated. We apply230Th/U burial dating to ostrich eggshells (OES) from Ysterfontein 1 (YFT1, Western Cape, South Africa), a stratified MSA shell midden.230Th/U burial ages of YFT1 OES are relatively precise (median ± 2.7%), consistent with other age constraints, and preserve stratigraphic principles. Bayesian age–depth modeling indicates YFT1 was deposited between 119.9 to 113.1 thousand years ago (ka) (95% CI of model ages), and the entire 3.8 m thick midden may have accumulated within ∼2,300 y. Stable carbon, nitrogen, and oxygen isotopes of OES indicate that during occupation the local environment was dominated by C3vegetation and was initially significantly wetter than at present but became drier and cooler with time. Integrating archaeological evidence with OES230Th/U ages and stable isotopes shows the following: 1) YFT1 is the oldest shell midden known, providing minimum constraints on full coastal adaptation by ∼120 ka; 2) despite rapid sea-level drop and other climatic changes during occupation, relative shellfish proportions and sizes remain similar, suggesting adaptive foraging along a changing coastline; 3) the YFT1 lithic technocomplex is similar to other west coast assemblages but distinct from potentially synchronous industries along the southern African coast, suggesting human populations were fragmented between seasonal rainfall zones; and 4) accumulation rates (up to 1.8 m/ka) are much higher than previously observed for dated, stratified MSA middens, implying more intense site occupation akin to Later Stone Age middens. 
    more » « less