skip to main content


This content will become publicly available on August 1, 2024

Title: A downcore increase in time averaging is the null expectation from the transit of death assemblages through a mixed layer
Abstract

Understanding how time averaging changes during burial is essential for using Holocene and Anthropocene cores to analyze ecosystem change, given the many ways in which time averaging affects biodiversity measures. Here, we use transition-rate matrices to explore how the extent of time averaging changes downcore as shells transit through a taphonomically complex mixed layer into permanently buried historical layers: this is a null model, without any temporal changes in rates of sedimentation or bioturbation, to contrast with downcore patterns that might be produced by human activity. Assuming stochastic burial and exhumation movements of shellsbetweenincrements within the mixed layer and stochastic disintegrationwithinincrements, we find that almost all combinations of net sedimentation, mixing, and disintegration produce a downcore increase in time averaging (interquartile range [IQR] of shell ages), this trend is typically associated with a decrease in kurtosis and skewness and by a shift from right-skewed to symmetrical age distributions. A downcore increase in time averaging is thus the null expectation wherever bioturbation generates an internally structured mixed layer (i.e., a surface, well-mixed layer is underlain by an incompletely mixed layer): under these conditions, shells are mixed throughout the entire mixed layer at a slower rate than they are buried below it by sedimentation. This downcore trend created by mixing is further amplified by the downcore decline in disintegration rate. We find that transition-rate matrices accurately reproduce the downcore changes in IQR, skewness, and kurtosis observed in bivalve assemblages from the southern California shelf. The right-skewed shell age-frequency distributions typical of surface death assemblages—the focus of most actualistic research—might be fossilized under exceptional conditions of episodic anoxia or sudden burial. However, such right-skewed assemblages will typically not survive transit through the surface mixed layer into subsurface historical layers: they are geologically transient. The deep-time fossil record will be dominated instead by the more time-averaged assemblages with weakly skewed age distributions that form in the lower parts of the mixed layer.

 
more » « less
Award ID(s):
1855381
NSF-PAR ID:
10467938
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Paleobiology
Volume:
49
Issue:
3
ISSN:
0094-8373
Page Range / eLocation ID:
527 to 562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Oceanographic and evolutionary inferences based on fossil assemblages can be obscured by age offsets among co‐occurring shells (i.e., time averaging). To identify the contributions of sedimentation, mixing, durability, and production to within‐ and between‐species age offsets, we analyze downcore changes in the age‐frequency distributions of two bivalves on the California shelf. Within‐species age offsets are ~50–2,000 years forParvilucinaand ~2,000–4,000 years forNuculanaand between‐species offsets are 1,000–4,000 years within the 10‐ to 25‐cm‐thick stratigraphic units. Shells within the top 20–24 cm of the seabed are age‐homogeneous, defining the thickness of the surface completely‐mixed layer (SML), and have strongly right‐skewed age‐frequency distributions, indicating fast shell disintegration. The SML thus coincides with the taphonomic active zone and extends below the redoxcline at ~10 cm. Shells >2,000–3,000 years old occurring within the SML have been exhumed from subsurface shell‐rich units rich where disintegration is negligible (sequestration zone, SZ). Burrowers (callianassid shrimps) penetrate 40–50 cm below the seafloor into this SZ. The millennial offsets within each increment result from the advection of old shells from the SZ, combined with an out‐of‐phase change in species production. Age unmixing reveals thatParvilucinawas abundant during the transgressive phase, rare during the highstand phase, and increased steeply in the twentieth century in response to wastewater.Nuculanawas abundant during the highstand phase and has declined over the past two centuries. This sequestration‐exhumation dynamic accentuates age offsets by allowing both the persistence of shells below the SML and their later admixing with younger shells within the SML.

     
    more » « less
  2. Abstract

    Surficial shell accumulations from shallow marine settings are typically averaged over centennial-to-millennial time scales and dominated by specimens that died in the most recent centuries, resulting in strongly right-skewed age-frequency distributions (AFDs). However, AFDs from modern offshore settings (outer shelf and uppermost continental slope) still need to be explored. Using individually dated shells (14C-calibrated amino acid racemization), we compared AFDs along an onshore-offshore gradient across the southern Brazilian shelf, with sites ranging from the inner shelf, shallow-water (< 40 m) to offshore, deep-water (> 100 m) settings. The duration of time averaging is slightly higher in deeper water environments, and the AFD shapes change along the depositional profile. The inner shelf AFDs are strongly right-skewed due to the dominance of shells from the most recent millennia (median age range: 0–3 ka). In contrast, on the outer shelf and the uppermost continental slope, AFDs are symmetrical to left-skewed and dominated by specimens that died following the Last Glacial Maximum (median age range: 15–18 ka). The onshore-offshore changes in the observed properties of AFDs—increased median age and decreased skewness, but only slightly increased temporal mixing—likely reflect changes in sea level and concurrent water depth-related changes in biological productivity. These results suggest that on a passive continental margin subject to post-glacial sea-level changes, the magnitude of time-averaging of shell assemblages is less variable along the depositional profile than shell assemblage ages and the shapes of AFDs.

     
    more » « less
  3. Abstract. Although the depth of bioturbation can be estimated on the basisof ichnofabric, the timescale of sediment mixing (reworking) and irrigation(ventilation) by burrowers that affects carbonate preservation andbiogeochemical cycles is difficult to estimate in the stratigraphic record.However, pyrite linings on the interior of shells can be a signature of slowand shallow irrigation. They indicate that shells of molluscs initiallyinhabiting oxic sediment pockets were immediately and permanentlysequestered in reduced, iron-rich microenvironments within the mixed layer.Molluscan biomass-stimulated sulfate reduction and pyrite precipitation wasconfined to the location of decay under such conditions. A high abundance ofpyrite-lined shells in the stratigraphic record can thus be diagnostic oflimited exposure of organic tissues to O2 even when the seafloor isinhabited by abundant infauna disrupting and age-homogenizing sedimentaryfabric as in the present-day northern Adriatic Sea. Here, we reconstructthis sequestration pathway characterized by slow irrigation (1) by assessingpreservation and postmortem ages of pyrite-lined shells of theshallow-infaunal and hypoxia-tolerant bivalve Varicorbula gibba in sediment cores and (2) byevaluating whether an independently documented decline in the depth ofmixing, driven by high frequency of seasonal hypoxia during the 20thcentury, affected the frequency of pyrite-lined shells in the stratigraphicrecord of the northern Adriatic Sea. First, at prodelta sites with a highsedimentation rate, linings of pyrite framboids form rapidly in the upper5–10 cm as they already appear in the interiors of shells younger than 10 yearsand occur preferentially in well-preserved and articulated shells withperiostracum. Second, increments deposited in the early 20th centurycontain < 20 % of shells lined with pyrite at the Po prodelta and30 %–40 % at the Isonzo prodelta, whereas the late 20th centuryincrements possess 50 %–80 % of shells lined with pyrite at both locations.At sites with slow sedimentation rate, the frequency of pyrite linings islow (< 10 %–20 %). Surface sediments remained well mixed by depositand detritus feeders even in the late 20th century, thus maintainingthe suboxic zone with dissolved iron. The upcore increase in the frequencyof pyrite-lined shells thus indicates that the oxycline depth was reducedand bioirrigation rates declined during the 20th century. Wehypothesize that the permanent preservation of pyrite linings within theshells of V. gibba in the subsurface stratigraphic record was enabled by slowrecovery of infaunal communities from seasonal hypoxic events, leading tothe dominance of surficial sediment modifiers with low irrigation potential.The presence of very young and well-preserved pyrite-lined valves in theuppermost zones of the mixed layer indicates that rapid obrution by episodicsediment deposition is not needed for preservation of pyrite linings whensediment irrigation is transient and background sedimentation rates arenot low (here, exceeding ∼ 0.1 cm yr−1) and infaunal organismsdie at their living position within the sediment. Abundance ofwell-preserved shells lined by pyrite exceeding ∼ 10 % perassemblage in apparently well-mixed sediments in the deep-time stratigraphicrecord can be an indicator of inefficient bioirrigation. Fine-grainedprodelta sediments in the northern Adriatic Sea deposited since themid-20th century, with high preservation potential of reducedmicroenvironments formed within a mixed layer, can represent taphonomic andearly diagenetic analogues of deep-time skeletal assemblages with pyritelinings. 
    more » « less
  4. Abstract

    Time averaging of fossil assemblages determines temporal precision of paleoecological and geochronological inferences. Taxonomic differences in intrinsic skeletal durability are expected to produce temporal mismatch between co-occurring species, but the importance of this effect is difficult to assess due to lack of direct estimates of time averaging for many higher taxa. Moreover, burial below the taphonomic active zone and early diagenetic processes may alleviate taxonomic differences in disintegration rates in subsurface sediments. We compared time averaging across five phyla of major carbonate producers co-occurring in a sediment core from the northern Adriatic Sea shelf. We dated individual bivalve shells, foraminiferal tests, tests and isolated plates of irregular and regular echinoids, crab claws, and fish otoliths. In spite of different skeletal architecture, mineralogy, and life habit, all taxa showed very similar time averaging varying from ~1800 to ~3600 yr (interquartile age ranges). Thus, remains of echinoids and crustaceans—two groups with multi-elemental skeletons assumed to have low preservation potential—can still undergo extensive age mixing comparable to that of the co-occurring mollusk shells. The median ages of taxa differed by as much as ~3700 yr, reflecting species-specific timing of seafloor colonization during the Holocene transgression. Our results are congruent with sequestration models invoking taphonomic processes that minimize durability differences among taxa. These processes together with temporal variability in skeletal production can overrule the effects of durability in determining temporal resolution of multi-taxic fossil assemblages.

     
    more » « less
  5. Abstract

    Death assemblages (DAs) are increasingly recognized as a valuable source to reconstruct past ecological baselines, due to the accumulation of skeletal material of non-contemporaneous cohorts. We here quantify the age and time-averaging of DAs on shallow subtidal (5–25 m) rocky substrates and in meadows ofPosidonia oceanicain the eastern Mediterranean. We show that such DAs are very young – median ages 9–56 years – with limited time-averaging, one to two orders of magnitude less than on even nearby soft substrates. On rocky substrates, out-of-habitat transport is likely the main cause of loss of older shells. InPosidonia oceanicameadows, the root and rhizome system creates a dense structure – thematte– that quickly entangles and buries shells and limits the potential for bioturbation. Thematteis, however, a peculiar feature ofPosidonia oceanica, and age and time-averaging in meadows of other seagrass species may be different. The young age of DAs in these habitats requires a careful consideration of their appropriateness as baselines. The large difference in DA age between soft substrates, subject to numerous studies, and hard and seagrass substrates, rarely inspected with geochronological techniques, implies that DA dating is important for studies aiming at using DAs as baselines.

     
    more » « less