skip to main content

Title: MetaCC allows scalable and integrative analyses of both long-read and short-read metagenomic Hi-C data

Metagenomic Hi-C (metaHi-C) can identify contig-to-contig relationships with respect to their proximity within the same physical cell. Shotgun libraries in metaHi-C experiments can be constructed by next-generation sequencing (short-read metaHi-C) or more recent third-generation sequencing (long-read metaHi-C). However, all existing metaHi-C analysis methods are developed and benchmarked on short-read metaHi-C datasets and there exists much room for improvement in terms of more scalable and stable analyses, especially for long-read metaHi-C data. Here we report MetaCC, an efficient and integrative framework for analyzing both short-read and long-read metaHi-C datasets. MetaCC outperforms existing methods on normalization and binning. In particular, the MetaCC normalization module, named NormCC, is more than 3000 times faster than the current state-of-the-art method HiCzin on a complex wastewater dataset. When applied to one sheep gut long-read metaHi-C dataset, MetaCC binning module can retrieve 709 high-quality genomes with the largest species diversity using one single sample, including an expansion of five uncultured members from the orderErysipelotrichales, and is the only binner that can recover the genome of one important speciesBacteroides vulgatus. Further plasmid analyses reveal that MetaCC binning is able to capture multi-copy plasmids.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Long-read sequencing is revolutionizingde-novogenome assemblies, with continued advancements making it more readily available for previously understudied, non-model organisms. Stony corals are one such example, with long-readde-novogenome assemblies now starting to be publicly available, opening the door for a wide array of ‘omics-based research. Here we present a newde-novogenome assembly for the endangered Caribbean star coral,Orbicella faveolata, using PacBio circular consensus reads. Our genome assembly improved the contiguity (51 versus 1,933 contigs) and complete and single copy BUSCO orthologs (93.6% versus 85.3%, database metazoa_odb10), compared to the currently available reference genome generated using short-read methodologies. Our newde-novoassembled genome also showed comparable quality metrics to other coral long-read genomes. Telomeric repeat analysis identified putative chromosomes in our scaffolded assembly, with these repeats at either one, or both ends, of scaffolded contigs. We identified 32,172 protein coding genes in our assembly through use of long-read RNA sequencing (ISO-seq) of additionalO. faveolatafragments exposed to a range of abiotic and biotic treatments, and publicly available short-read RNA-seq data. With anthropogenic influences heavily affectingO. faveolata, as well as itsincreasing incorporation into reef restoration activities, this updated genome resource can be used for population genomics and other ‘omics analyses to aid in the conservation of this species.

    more » « less
  2. Alternate isoforms are important contributors to phenotypic diversity across eukaryotes. Although short-read RNA-sequencing has increased our understanding of isoform diversity, it is challenging to accurately detect full-length transcripts, preventing the identification of many alternate isoforms. Long-read sequencing technologies have made it possible to sequence full-length alternative transcripts, accurately characterizing alternative splicing events, alternate transcription start and end sites, and differences in UTR regions. Here, we use Pacific Biosciences (PacBio) long-read RNA-sequencing (Iso-Seq) to examine the transcriptomes of five organs in threespine stickleback fish ( Gasterosteus aculeatus ), a widely used genetic model species. The threespine stickleback fish has a refined genome assembly in which gene annotations are based on short-read RNA sequencing and predictions from coding sequence of other species. This suggests some of the existing annotations may be inaccurate or alternative transcripts may not be fully characterized. Using Iso-Seq we detected thousands of novel isoforms, indicating many isoforms are absent in the current Ensembl gene annotations. In addition, we refined many of the existing annotations within the genome. We noted many improperly positioned transcription start sites that were refined with long-read sequencing. The Iso-Seq-predicted transcription start sites were more accurate and verified through ATAC-seq. We also detected many alternative splicing events between sexes and across organs. We found a substantial number of genes in both somatic and gonadal samples that had sex-specific isoforms. Our study highlights the power of long-read sequencing to study the complexity of transcriptomes, greatly improving genomic resources for the threespine stickleback fish. 
    more » « less
  3. null (Ed.)
    Abstract Background Third-generation single molecule sequencing technologies can sequence long reads, which is advancing the frontiers of genomics research. However, their high error rates prohibit accurate and efficient downstream analysis. This difficulty has motivated the development of many long read error correction tools, which tackle this problem through sampling redundancy and/or leveraging accurate short reads of the same biological samples. Existing studies to asses these tools use simulated data sets, and are not sufficiently comprehensive in the range of software covered or diversity of evaluation measures used. Results In this paper, we present a categorization and review of long read error correction methods, and provide a comprehensive evaluation of the corresponding long read error correction tools. Leveraging recent real sequencing data, we establish benchmark data sets and set up evaluation criteria for a comparative assessment which includes quality of error correction as well as run-time and memory usage. We study how trimming and long read sequencing depth affect error correction in terms of length distribution and genome coverage post-correction, and the impact of error correction performance on an important application of long reads, genome assembly. We provide guidelines for practitioners for choosing among the available error correction tools and identify directions for future research. Conclusions Despite the high error rate of long reads, the state-of-the-art correction tools can achieve high correction quality. When short reads are available, the best hybrid methods outperform non-hybrid methods in terms of correction quality and computing resource usage. When choosing tools for use, practitioners are suggested to be careful with a few correction tools that discard reads, and check the effect of error correction tools on downstream analysis. Our evaluation code is available as open-source at . 
    more » « less
  4. Abstract

    High-throughput sequencing data enables the comprehensive study of genomes and the variation therein. Essential for the interpretation of this genomic data is a thorough understanding of the computational methods used for processing and analysis. Whereas “gold-standard” empirical datasets exist for this purpose in humans, synthetic (i.e., simulated) sequencing data can offer important insights into the capabilities and limitations of computational pipelines for any arbitrary species and/or study design—yet, the ability of read simulator software to emulate genomic characteristics of empirical datasets remains poorly understood. We here compare the performance of six popular short-read simulators—ART, DWGSIM, InSilicoSeq, Mason, NEAT, and wgsim—and discuss important considerations for selecting suitable models for benchmarking.

    more » « less
  5. Abstract

    The PacBio®HiFi sequencing method yields highly accurate long-read sequencing datasets with read lengths averaging 10–25 kb and accuracies greater than 99.5%. These accurate long reads can be used to improve results for complex applications such as single nucleotide and structural variant detection, genome assembly, assembly of difficult polyploid or highly repetitive genomes, and assembly of metagenomes. Currently, there is a need for sample data sets to both evaluate the benefits of these long accurate reads as well as for development of bioinformatic tools including genome assemblers, variant callers, and haplotyping algorithms. We present deep coverage HiFi datasets for five complex samples including the two inbred model genomesMus musculusandZea mays, as well as two complex genomes, octoploidFragaria × ananassaand the diploid anuranRana muscosa. Additionally, we release sequence data from a mock metagenome community. The datasets reported here can be used without restriction to develop new algorithms and explore complex genome structure and evolution. Data were generated on the PacBio Sequel II System.

    more » « less