skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TIPS: Topologically Important Path Sampling for Anytime Neural Networks
Anytime neural networks (AnytimeNNs) are a promising solution to adaptively adjust the model complexity at runtime under various hardware resource constraints. However, the manually-designed AnytimeNNs are biased by designers' prior experience and thus provide sub-optimal solutions. To address the limitations of existing hand-crafted approaches, we first model the training process of AnytimeNNs as a discrete-time Markov chain (DTMC) and use it to identify the paths that contribute the most to the training of AnytimeNNs. Based on this new DTMC-based analysis, we further propose TIPS, a framework to automatically design AnytimeNNs under various hardware constraints. Our experimental results show that TIPS can improve the convergence rate and test accuracy of AnytimeNNs. Compared to the existing AnytimeNNs approaches, TIPS improves the accuracy by 2%-6.6% on multiple datasets and achieves SOTA accuracy-FLOPs tradeoffs.  more » « less
Award ID(s):
2007284
PAR ID:
10468130
Author(s) / Creator(s):
Publisher / Repository:
International Conference on Machine Learning (ICML)
Date Published:
Subject(s) / Keyword(s):
Deep Learning, Anytime Neural Networks, Discrete-Time Markov Chain
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultra-low-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks. 
    more » « less
  2. Hardware security verification in hardware design has been identified as a significant bottleneck due to complexity and time-to-market constraints. Assertion-Based Verification is a recognized solution to this challenge; however, assertion generation relies on expertise and labor. While LLMs show promise as automated tools, existing approaches often rely on complex prompt engineering, requiring expert validation. The challenge lies in identifying effective methods for constructing training datasets that enhance LLMs' hardware performance. We introduce HADA (Hardware Assertion through Data Augmentation), a novel framework to train hardware debug specific expert LLM by leveraging its ability to integrate knowledge from formal verification tools, hardware security knowledge database, and version control system. Our results demonstrate that integrating multi-source data significantly enhances the effectiveness of hardware security verification, with each addressing the limitations of the others. 
    more » « less
  3. Accepted and published in the Proceedings of the 2025 USENIX Annual Technical Conference (USENIX ATC ’25). Deep neural network (DNN) training continues to scale rapidly in terms of model size, data volume, and sequence length, to the point where multiple machines are required to fit large models for training. Different distributed and parallel training strategies have been developed to support large-scale DNN training by partitioning the training state across GPUs. However, existing DNN training systems provide very limited support for reconfiguring parallelism strategies in the middle of the training via checkpointing. This limitation arises because distributed checkpoints are tightly coupled to specific model parallelism and hardware configurations, preventing large-scale training jobs from efficiently adapting to hardware failures or resource elasticity. This paper presents Universal Checkpointing (UCP), a novel checkpointing system that enables flexible and efficient DNN training with reconfigurable parallelism. UCP overcomes challenges in existing systems by decoupling checkpoint structure from parallel training strategies and hardware configurations. In addition, we present a pattern-based reconfiguration pipeline that enables automatic, flexible, and efficient mapping of checkpoint state to various parallelism strategies. Evaluation on a range of DNN models, including state-of-the-art dense and sparse LLMs, shows that UCP enables reconfiguration for a broader set of widely used parallelism strategies than existing solutions while adding negligible reconfiguration cost. UCP has been successfully employed in real LLM training workloads, greatly enhancing their flexibility and resilience to dynamic hardware environments. 
    more » « less
  4. Vertical Federated Learning (FL) is a new paradigm that enables users with non-overlapping attributes of the same data samples to jointly train a model without directly sharing the raw data. Nevertheless, recent works show that it's still not sufficient to prevent privacy leakage from the training process or the trained model. This paper focuses on studying the privacy-preserving tree boosting algorithms under the vertical FL. The existing solutions based on cryptography involve heavy computation and communication overhead and are vulnerable to inference attacks. Although the solution based on Local Differential Privacy (LDP) addresses the above problems, it leads to the low accuracy of the trained model. This paper explores to improve the accuracy of the widely deployed tree boosting algorithms satisfying differential privacy under vertical FL. Specifically, we introduce a framework called OpBoost. Three order-preserving desensitization algorithms satisfying a variant of LDP called distance-based LDP (dLDP) are designed to desensitize the training data. In particular, we optimize the dLDP definition and study efficient sampling distributions to further improve the accuracy and efficiency of the proposed algorithms. The proposed algorithms provide a trade-off between the privacy of pairs with large distance and the utility of desensitized values. Comprehensive evaluations show that OpBoost has a better performance on prediction accuracy of trained models compared with existing LDP approaches on reasonable settings. Our code is open source. 
    more » « less
  5. Many state-of-the-art ML results have been obtained by scaling up the number of parameters in existing models. However, parameters and activations for such large models often do not fit in the memory of a single accelerator device; this means that it is necessary to distribute training of large models over multiple accelerators. In this work, we propose PipeDream-2BW, a system that supports memory-efficient pipeline parallelism. PipeDream-2BW uses a novel pipelining and weight gradient coalescing strategy, combined with the double buffering of weights, to ensure high throughput, low memory footprint, and weight update semantics similar to data parallelism. In addition, PipeDream-2BW automatically partitions the model over the available hardware resources, while respecting hardware constraints such as memory capacities of accelerators and interconnect topologies. PipeDream-2BW can accelerate the training of large GPT and BERT language models by up to 20x with similar final model accuracy. 
    more » « less