skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring Inductive Biases of In-Context Learning with Underspecified Demonstrations
In-context learning (ICL) is an important paradigm for adapting large language models (LLMs) to new tasks, but the generalization behavior of ICL remains poorly understood. We investigate the inductive biases of ICL from the perspective of feature bias: which feature ICL is more likely to use given a set of underspecified demonstrations in which two features are equally predictive of the labels. First, we characterize the feature biases of GPT-3 models by constructing underspecified demonstrations from a range of NLP datasets and feature combinations. We find that LLMs exhibit clear feature biases—for example, demonstrating a strong bias to predict labels according to sentiment rather than shallow lexical features, like punctuation. Second, we evaluate the effect of different interventions that are designed to impose an inductive bias in favor of a particular feature, such as adding a natural language instruction or using semantically relevant label words. We find that, while many interventions can influence the learner to prefer a particular feature, it can be difficult to overcome strong prior biases. Overall, our results provide a broader picture of the types of features that ICL may be more likely to exploit and how to impose inductive biases that are better aligned with the intended task.  more » « less
Award ID(s):
2211779
PAR ID:
10468146
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
11289 to 11310
Format(s):
Medium: X
Location:
Toronto, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. In-context learning (ICL) exhibits dual operating modes: task learning, i.e., acquiring a new skill from in-context samples, and task retrieval, i.e., locating and activating a relevant pretrained skill. Recent theoretical work proposes various mathematical models to analyze ICL, but they cannot fully explain the duality. In this work, we analyze a generalized probabilistic model for pretraining data, obtaining a quantitative understanding of the two operating modes of ICL. Leveraging our analysis, we provide the first explanation of an unexplained phenomenon observed with real-world large language models (LLMs). Under some settings, the ICL risk initially increases and then decreases with more in-context examples. Our analysis offers a plausible explanation for this "early ascent" phenomenon: a limited number of in-context samples may lead to the retrieval of an incorrect skill, thereby increasing the risk, which will eventually diminish as task learning takes effect with more in-context samples. We also analyze ICL with biased labels, e.g., zero-shot ICL, where in-context examples are assigned random labels, and predict the bounded efficacy of such approaches. We corroborate our analysis and predictions with extensive experiments with Transformers and LLMs. 
    more » « less
  2. Recently, there has been an increase in efforts to understand how large language models (LLMs) propagate and amplify social biases. Several works have utilized templates for fairness evaluation, which allow researchers to quantify social biases in the absence of test sets with protected attribute labels. While template evaluation can be a convenient and helpful diagnostic tool to understand model deficiencies, it often uses a simplistic and limited set of templates. In this paper, we study whether bias measurements are sensitive to the choice of templates used for benchmarking. Specifically, we investigate the instability of bias measurements by manually modifying templates proposed in previous works in a semantically-preserving manner and measuring bias across these modifications. We find that bias values and resulting conclusions vary considerably across template modifications on four tasks, ranging from an 81% reduction (NLI) to a 162% increase (MLM) in (task-specific) bias measurements. Our results indicate that quantifying fairness in LLMs, as done in current practice, can be brittle and needs to be approached with more care and caution. 
    more » « less
  3. In-Context Learning (ICL) empowers Large Language Models (LLMs) to tackle various tasks by providing input-output examples as additional inputs, referred to as demonstrations. Nevertheless, the performance of ICL could be easily impacted by the quality of selected demonstrations. Existing efforts generally learn a retriever model to score each demonstration for selecting suitable demonstrations, however, the effect is suboptimal due to the large search space and the noise from unhelpful demonstrations. In this study, we introduce MoD, which partitions the demonstration pool into groups, each governed by an expert to reduce search space. We further design an expert-wise training strategy to alleviate the impact of unhelpful demonstrations when optimizing the retriever model. During inference, experts collaboratively retrieve demonstrations for the input query to enhance the ICL performance. We validate MoD via experiments across a range of NLP datasets and tasks, demonstrating its state-of-the-art performance and shedding new light on the future design of retrieval methods for ICL. 
    more » « less
  4. null (Ed.)
    One reason pretraining on self-supervised linguistic tasks is effective is that it teaches models features that are helpful for language understanding. However, we want pretrained models to learn not only to represent linguistic features, but also to use those features preferentially during fine-turning. With this goal in mind, we introduce a new English-language diagnostic set called MSGS (the Mixed Signals Generalization Set), which consists of 20 ambiguous binary classification tasks that we use to test whether a pretrained model prefers linguistic or surface generalizations during finetuning. We pretrain RoBERTa from scratch on quantities of data ranging from 1M to 1B words and compare their performance on MSGS to the publicly available RoBERTa_BASE. We find that models can learn to represent linguistic features with little pretraining data, but require far more data to learn to prefer linguistic generalizations over surface ones. Eventually, with about 30B words of pretraining data, RoBERTa_BASE does consistently demonstrate a linguistic bias with some regularity. We conclude that while self-supervised pretraining is an effective way to learn helpful inductive biases, there is likely room to improve the rate at which models learn which features matter. 
    more » « less
  5. TypeScript is a widely used optionally-typed language where developers can adopt “pay as you go” typing: they can add types as desired, and benefit from static typing. The “type annotation tax” or manual effort required to annotate new or existing TypeScript can be reduced by a variety of automatic methods. Probabilistic machine-learning (ML) approaches work quite well. ML approaches use different inductive biases, ranging from simple token sequences to complex graphical neural network (GNN) models capturing syntax and semantic relations. More sophisticated inductive biases are hand-engineered to exploit the formal nature of software. Rather than deploying fancy inductive biases for code, can we just use “big data” to learn natural patterns relevant to typing? We find evidence suggesting that this is the case. We present TypeBert, demonstrating that even with simple token-sequence inductive bias used in BERT-style models and enough data, type-annotation performance of the most sophisticated models can be surpassed. 
    more » « less