In-Context Learning (ICL) ability has been found efficient across a wide range of applications, where the Large Language Models (LLM) learn to complete the tasks from the examples in the prompt without tuning the parameters. In this work, we conduct a comprehensive study to understand ICL from a statistical perspective. First, we show that the perfectly pretrained LLMs perform Bayesian Model Averaging (BMA) for ICL under a dynamic model of examples in the prompt. The average error analysis for ICL is then built for the perfectly pretrained LLMs with the analysis of BMA. Second, we demonstrate how the attention structure boosts the BMA implementation. With sufficient examples in the prompt, attention is proven to perform BMA under the Gaussian linear ICL model, which also motivates the explicit construction of the hidden concepts from the attention heads' values. Finally, we analyze the pretraining behavior of LLMs. The pretraining error is decomposed as the generalization error and the approximation error. The generalization error is upper bounded via the PAC-Bayes framework. Then the ICL average error of the pretrained LLMs is shown to be the sum of O(T^{-1}) and the pretraining error. In addition, we analyze the ICL performance of the pretrained LLMs with misspecified examples.
more »
« less
Dual Operating Modes of In-Context Learning
In-context learning (ICL) exhibits dual operating modes: task learning, i.e., acquiring a new skill from in-context samples, and task retrieval, i.e., locating and activating a relevant pretrained skill. Recent theoretical work proposes various mathematical models to analyze ICL, but they cannot fully explain the duality. In this work, we analyze a generalized probabilistic model for pretraining data, obtaining a quantitative understanding of the two operating modes of ICL. Leveraging our analysis, we provide the first explanation of an unexplained phenomenon observed with real-world large language models (LLMs). Under some settings, the ICL risk initially increases and then decreases with more in-context examples. Our analysis offers a plausible explanation for this "early ascent" phenomenon: a limited number of in-context samples may lead to the retrieval of an incorrect skill, thereby increasing the risk, which will eventually diminish as task learning takes effect with more in-context samples. We also analyze ICL with biased labels, e.g., zero-shot ICL, where in-context examples are assigned random labels, and predict the bounded efficacy of such approaches. We corroborate our analysis and predictions with extensive experiments with Transformers and LLMs.
more »
« less
- Award ID(s):
- 2339978
- PAR ID:
- 10596472
- Publisher / Repository:
- Proceedings of the 41st International Conference on Machine Learning
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In-context learning (ICL) empowers large language models (LLMs) to tackle new tasks by using a series of training instances as prompts. Since generating the prompts needs to sample from a vast pool of instances and annotate them (e.g., add labels in classification task), existing methods have proposed to select a subset of unlabeled examples for annotation, thus enhancing the quality of prompts and concurrently mitigating annotation costs. However, these methods often require a long time to select instances due to their complexity, hindering their practical viability. To address this limitation, we propose a graph-based selection method, FastGAS, designed to efficiently identify high-quality instances while minimizing computational overhead. Initially, we construct a data similarity graph based on instance similarities. Subsequently, employing a graph partitioning algorithm, we partition the graph into pieces. Within each piece (i.e., subgraph), we adopt a greedy approach to pick the most representative nodes. By aggregating nodes from diverse pieces and annotating the corresponding instances, we identify a set of diverse and representative instances for ICL. Compared to prior approaches, our method not only exhibits superior performance on different tasks but also significantly reduces selection time. In addition, we demonstrate the efficacy of our approach in LLMs of larger sizes.more » « less
-
Large language models (LLMs) exhibit strong in-context learning (ICL) ability, which allows the model to make predictions on new examples based on the given prompt. Recently, a line of research (Von Oswald et al., 2023; Aky¨urek et al., 2023; Ahn et al., 2023; Mahankali et al., 2023; Zhang et al., 2024) considered ICL for a simple linear regression setting and showed that the forward pass of Transformers is simulating some variants of gradient descent (GD) algorithms on the in-context examples. In practice, the input prompt usually contains a task descriptor in addition to in-context examples. We investigate how the task description helps ICL in the linear regression setting. Consider a simple setting where the task descriptor describes the mean of input in linear regression. Our results show that gradient flow converges to a global minimum for a linear Transformer. At the global minimum, the Transformer learns to use the task descriptor effectively to improve its performance. Empirically, we verify our results by showing that the weights converge to the predicted global minimum and Transformers indeed perform better with task descriptors.more » « less
-
In-context learning (ICL) is an important paradigm for adapting large language models (LLMs) to new tasks, but the generalization behavior of ICL remains poorly understood. We investigate the inductive biases of ICL from the perspective of feature bias: which feature ICL is more likely to use given a set of underspecified demonstrations in which two features are equally predictive of the labels. First, we characterize the feature biases of GPT-3 models by constructing underspecified demonstrations from a range of NLP datasets and feature combinations. We find that LLMs exhibit clear feature biases—for example, demonstrating a strong bias to predict labels according to sentiment rather than shallow lexical features, like punctuation. Second, we evaluate the effect of different interventions that are designed to impose an inductive bias in favor of a particular feature, such as adding a natural language instruction or using semantically relevant label words. We find that, while many interventions can influence the learner to prefer a particular feature, it can be difficult to overcome strong prior biases. Overall, our results provide a broader picture of the types of features that ICL may be more likely to exploit and how to impose inductive biases that are better aligned with the intended task.more » « less
-
Existing continual learning (CL) methods mainly rely on fine-tuning or adapting large language mod- els (LLMs). They still suffer from catastrophic for- getting (CF). Little work has been done to exploit in-context learning (ICL) to leverage the extensive knowledge within LLMs for CL without updating any parameters. However, incrementally learning each new task in ICL necessitates adding training examples from each class of the task to the prompt, which hampers scalability as the prompt length in- creases. This issue not only leads to excessively long prompts that exceed the input token limit of the underlying LLM but also degrades the model’s performance due to the overextended context. To address this, we introduce InCA, a novel approach that integrates an external continual learner (ECL) with ICL to enable scalable CL without CF. The ECL is built incrementally to pre-select a small subset of likely classes for each test instance. By restricting the ICL prompt to only these selected classes, InCA prevents prompt lengths from becom- ing excessively long, while maintaining high per- formance. Experimental results demonstrate that InCA significantly outperforms existing CL base- lines, achieving substantial performance gains.more » « less
An official website of the United States government

