skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions
Integrating functions on discrete domains into neural networks is key to develop- ing their capability to reason about discrete objects. But, discrete domains are (I) not naturally amenable to gradient-based optimization, and (II) incompatible with deep learning architectures that rely on representations in high-dimensional vector spaces. In this work, we address both difficulties for set functions, which capture many important discrete problems. First, we develop a framework for extending set functions onto low-dimensional continuous domains, where many extensions are naturally defined. Our framework subsumes many well-known extensions as special cases. Second, to avoid undesirable low-dimensional neural network bottlenecks, we convert low-dimensional extensions into representations in high-dimensional spaces, taking inspiration from the success of semidefinite programs for combinatorial optimization. Empirically, we observe benefits of our extensions for unsupervised neural combinatorial optimization, in particular with high-dimensional representations.  more » « less
Award ID(s):
1717610
PAR ID:
10468311
Author(s) / Creator(s):
Publisher / Repository:
Neural Information Processing Systems (NeurIPS)
Date Published:
Subject(s) / Keyword(s):
Neural Networks, Combinatorial Optimization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study the problem of learning sequential decision-making policies in settings with multiple state-action representations. Such settings naturally arise in many domains, such as planning (e.g., multiple integer programming formulations) and various combinatorial optimization problems (e.g., those with both integer programming and graph-based formulations). Inspired by the classical co-training framework for classification, we study the problem of co-training for policy learning. We present sufficient conditions under which learning from two views can improve upon learning from a single view alone. Motivated by these theoretical insights, we present a meta-algorithm for co-training for sequential decision making. Our framework is compatible with both reinforcement learning and imitation learning. We validate the effectiveness of our approach across a wide range of tasks, including discrete/continuous control and combinatorial optimization. 
    more » « less
  2. Adams, RP; Gogate V (Ed.)
    We study the problem of learning sequential decision-making policies in settings with multiple state-action representations. Such settings naturally arise in many domains, such as planning (e.g., multiple integer programming formulations) and various combinatorial optimization problems (e.g., those with both integer programming and graph-based formulations). Inspired by the classical co-training framework for classification, we study the problem of co-training for policy learning. We present sufficient conditions under which learning from two views can improve upon learning from a single view alone. Motivated by these theoretical insights, we present a meta-algorithm for co-training for sequential decision making. Our framework is compatible with both reinforcement learning and imitation learning. We validate the effectiveness of our approach across a wide range of tasks, including discrete/continuous control and combinatorial optimization. 
    more » « less
  3. Bayesian optimization is a highly efficient approach to optimizing objective functions which are expensive to query. These objectives are typically represented by Gaussian process (GP) surrogate models which are easy to optimize and support exact inference. While standard GP surrogates have been well-established in Bayesian optimization, Bayesian neural networks (BNNs) have recently become practical function approximators, with many benefits over standard GPs such as the ability to naturally handle non-stationarity and learn representations for high-dimensional data. In this paper, we study BNNs as alternatives to standard GP surrogates for optimization. We consider a variety of approximate inference procedures for finite-width BNNs, including high-quality Hamiltonian Monte Carlo, low-cost stochastic MCMC, and heuristics such as deep ensembles. We also consider infinite-width BNNs, linearized Laplace approximations, and partially stochastic models such as deep kernel learning. We evaluate this collection of surrogate models on diverse problems with varying dimensionality, number of objectives, non-stationarity, and discrete and continuous inputs. We find: (i) the ranking of methods is highly problem dependent, suggesting the need for tailored inductive biases; (ii) HMC is the most successful approximate inference procedure for fully stochastic BNNs; (iii) full stochasticity may be unnecessary as deep kernel learning is relatively competitive; (iv) deep ensembles perform relatively poorly; (v) infinite-width BNNs are particularly promising, especially in high dimensions. 
    more » « less
  4. In this article, we introduce a compact representation for measured BRDFs by leveraging Neural Processes (NPs). Unlike prior methods that express those BRDFs as discrete high-dimensional matrices or tensors, our technique considers measured BRDFs as continuous functions and works in corresponding function spaces . Specifically, provided the evaluations of a set of BRDFs, such as ones in MERL and EPFL datasets, our method learns a low-dimensional latent space as well as a few neural networks to encode and decode these measured BRDFs or new BRDFs into and from this space in a non-linear fashion. Leveraging this latent space and the flexibility offered by the NPs formulation, our encoded BRDFs are highly compact and offer a level of accuracy better than prior methods. We demonstrate the practical usefulness of our approach via two important applications, BRDF compression and editing. Additionally, we design two alternative post-trained decoders to, respectively, achieve better compression ratio for individual BRDFs and enable importance sampling of BRDFs. 
    more » « less
  5. Binary decision diagrams (BDDs) have been a huge success story in hardware and software verification and are increasingly applied to a wide range of combinatorial problems. While BDDs can encode boolean-valued functions of boolean-valued variables, many BDD variants have been proposed, not just to improve their efficiency, but to manage multivalued domains (a straightforward extension), multivalued ranges (using several competitive alternatives), and two-dimensional data (relations and matrices instead of sets or vectors). Orthogonally to these extensions, much effort has been spent on variable order heuristics, an essential aspect that can affect memory and time requirements by up to an exponential factor. We survey some of these exciting results and discuss some fruitful research directions for further work. Index Terms—Binary decision diagrams, canonicity, discrete function encoding, variable order heuristics, Markov chains 
    more » « less