skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Localization schemes: A framework for proving mixing bounds for Markov chains
Two recent and seemingly-unrelated techniques for proving mixing bounds for Markov chains are: (i) the framework of Spectral Independence, introduced by Anari, Liu and Oveis Gharan, and its numerous extensions, which have given rise to several breakthroughs in the analysis of mixing times of discrete Markov chains and (ii) the Stochastic Localization technique which has proven useful in establishing mixing and expansion bounds for both log-concave measures and for measures on the discrete hypercube. In this paper, we introduce a framework which connects ideas from both techniques. Our framework unifies, simplifies and extends those two techniques. In its center is the concept of a localization scheme which, to every probability measure, assigns a martingale of probability measures which localize in space as time evolves. As it turns out, to every such scheme corresponds a Markov chain, and many chains of interest appear naturally in this framework. This viewpoint provides tools for deriving mixing bounds for the dynamics through the analysis of the corresponding localization process. Generalizations of concepts of Spectral Independence and Entropic Independence naturally arise from our definitions, and in particular we recover the main theorems in the spectral and entropic independence frameworks via simple martingale arguments (completely bypassing the need to use the theory of high-dimensional expanders). We demonstrate the strength of our proposed machinery by giving short and (arguably) simpler proofs to many mixing bounds in the recent literature, including giving the first O(nlogn) bound for the mixing time of Glauber dynamics on the hardcore-model (of arbitrary degree) in the tree-uniqueness regime.  more » « less
Award ID(s):
1926686
PAR ID:
10351256
Author(s) / Creator(s):
Date Published:
Journal Name:
FOCS 2021 62nd Annual IEEE Symposium of Foundation of Computer Science
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a notion called entropic independence that is an entropic analog of spectral notions of high-dimensional expansion. Informally, entropic independence of a background distribution $$\mu$$ on $$k$$-sized subsets of a ground set of elements says that for any (possibly randomly chosen) set $$S$$, the relative entropy of a single element of $$S$$ drawn uniformly at random carries at most $O(1/k)$ fraction of the relative entropy of $$S$$. Entropic independence is the analog of the notion of spectral independence, if one replaces variance by entropy. We use entropic independence to derive tight mixing time bounds, overcoming the lossy nature of spectral analysis of Markov chains on exponential-sized state spaces. In our main technical result, we show a general way of deriving entropy contraction, a.k.a. modified log-Sobolev inequalities, for down-up random walks from spectral notions. We show that spectral independence of a distribution under arbitrary external fields automatically implies entropic independence. We furthermore extend our theory to the case where spectral independence does not hold under arbitrary external fields. To do this, we introduce a framework for obtaining tight mixing time bounds for Markov chains based on what we call restricted modified log-Sobolev inequalities, which guarantee entropy contraction not for all distributions, but for those in a sufficiently large neighborhood of the stationary distribution. To derive our results, we relate entropic independence to properties of polynomials: $$\mu$$ is entropically independent exactly when a transformed version of the generating polynomial of $$\mu$$ is upper bounded by its linear tangent; this property is implied by concavity of the said transformation, which was shown by prior work to be locally equivalent to spectral independence. We apply our results to obtain (1) tight modified log-Sobolev inequalities and mixing times for multi-step down-up walks on fractionally log-concave distributions, (2) the tight mixing time of $$O(n\log n)$$ for Glauber dynamics on Ising models whose interaction matrix has eigenspectrum lying within an interval of length smaller than $$1$$, improving upon the prior quadratic dependence on $$n$$, and (3) nearly-linear time $$\widetilde O_{\delta}(n)$$ samplers for the hardcore and Ising models on $$n$$-node graphs that have $$\delta$$-relative gap to the tree-uniqueness threshold. In the last application, our bound on the running time does not depend on the maximum degree $$\Delta$$ of the graph, and is therefore optimal even for high-degree graphs, and in fact, is sublinear in the size of the graph for high-degree graphs. 
    more » « less
  2. For general spin systems, we prove that a contractive coupling for an arbitrary local Markov chain implies optimal bounds on the mixing time and the modified log-Sobolev constant for a large class of Markov chains including the Glauber dynamics, arbitrary heat-bath block dynamics, and the Swendsen-Wang dynamics. This reveals a novel connection between probabilistic techniques for bounding the convergence to stationarity and analytic tools for analyzing the decay of relative entropy. As a corollary of our general results, we obtain O(n log n) mixing time and Ω(1/n) modified log-Sobolev constant of the Glauber dynamics for sampling random q-colorings of an n-vertex graph with constant maximum degree Δ when q > (11/6–∊0)Δ for some fixed ∊0 > 0. We also obtain O(log n) mixing time and Ω(1) modified log-Sobolev constant of the Swendsen-Wang dynamics for the ferromagnetic Ising model on an n-vertex graph of constant maximum degree when the parameters of the system lie in the tree uniqueness region. At the heart of our results are new techniques for establishing spectral independence of the spin system and block factorization of the relative entropy. On one hand we prove that a contractive coupling of any local Markov chain implies spectral independence of the Gibbs distribution. On the other hand we show that spectral independence implies factorization of entropy for arbitrary blocks, establishing optimal bounds on the modified log-Sobolev constant of the corresponding block dynamics. 
    more » « less
  3. Megow, Nicole; Smith, Adam (Ed.)
    We consider spin systems on general n-vertex graphs of unbounded degree and explore the effects of spectral independence on the rate of convergence to equilibrium of global Markov chains. Spectral independence is a novel way of quantifying the decay of correlations in spin system models, which has significantly advanced the study of Markov chains for spin systems. We prove that whenever spectral independence holds, the popular Swendsen-Wang dynamics for the q-state ferromagnetic Potts model on graphs of maximum degree Δ, where Δ is allowed to grow with n, converges in O((Δ log n)^c) steps where c > 0 is a constant independent of Δ and n. We also show a similar mixing time bound for the block dynamics of general spin systems, again assuming that spectral independence holds. Finally, for monotone spin systems such as the Ising model and the hardcore model on bipartite graphs, we show that spectral independence implies that the mixing time of the systematic scan dynamics is O(Δ^c log n) for a constant c > 0 independent of Δ and n. Systematic scan dynamics are widely popular but are notoriously difficult to analyze. This result implies optimal O(log n) mixing time bounds for any systematic scan dynamics of the ferromagnetic Ising model on general graphs up to the tree uniqueness threshold. Our main technical contribution is an improved factorization of the entropy functional: this is the common starting point for all our proofs. Specifically, we establish the so-called k-partite factorization of entropy with a constant that depends polynomially on the maximum degree of the graph. 
    more » « less
  4. Abstract Entropic Brenier maps are regularized analogues of Brenier maps (optimal transport maps) which converge to Brenier maps as the regularization parameter shrinks. In this work, we prove quantitative stability bounds between entropic Brenier maps under variations of the target measure. In particular, when all measures have bounded support, we establish the optimal Lipschitz constant for the mapping from probability measures to entropic Brenier maps. This provides an exponential improvement to a result of Carlier, Chizat, and Laborde (2024). As an application, we prove near-optimal bounds for the stability of semi-discrete unregularized Brenier maps for a family of discrete target measures. 
    more » « less
  5. Wootters, Mary; Sanita, Laura (Ed.)
    The Swendsen-Wang algorithm is a sophisticated, widely-used Markov chain for sampling from the Gibbs distribution for the ferromagnetic Ising and Potts models. This chain has proved difficult to analyze, due in part to the global nature of its updates. We present optimal bounds on the convergence rate of the Swendsen-Wang algorithm for the complete d-ary tree. Our bounds extend to the non-uniqueness region and apply to all boundary conditions. We show that the spatial mixing conditions known as Variance Mixing and Entropy Mixing, introduced in the study of local Markov chains by Martinelli et al. (2003), imply Ω(1) spectral gap and O(log n) mixing time, respectively, for the Swendsen-Wang dynamics on the d-ary tree. We also show that these bounds are asymptotically optimal. As a consequence, we establish Θ(log n) mixing for the Swendsen-Wang dynamics for all boundary conditions throughout the tree uniqueness region; in fact, our bounds hold beyond the uniqueness threshold for the Ising model, and for the q-state Potts model when q is small with respect to d. Our proofs feature a novel spectral view of the Variance Mixing condition inspired by several recent rapid mixing results on high-dimensional expanders and utilize recent work on block factorization of entropy under spatial mixing conditions. 
    more » « less