skip to main content


This content will become publicly available on July 19, 2024

Title: The Sponges of the Carmel Pinnacles Marine Protected Area

California's network of marine protected areas was created to protect the diversity and abundance of native marine life, but the status of some taxa is very poorly known. Here we describe the sponges (phylum Porifera) from the Carmel Pinnacles State Marine Reserve, as assessed by a SCUBA-based survey in shallow waters. Of the 29 sponge species documented, 12 (41%) of them were previously unknown. Using a combination of underwater photography, DNA sequencing, and morphological taxonomy, we greatly improve our understanding of the status and distribution of previously described species and formally describe the new species as Hymedesmia promina sp. nov., Phorbas nebulosus sp. nov., Clathria unoriginalis sp. nov., Clathria rumsena sp. nov., Megaciella sanctuarium sp. nov., Mycale lobos sp. nov., Xestospongia ursa sp. nov., Haliclona melissae sp. nov., Halichondria loma sp. nov., Hymeniacidon fusiformis sp. nov., Scopalina carmela sp. nov., and Obruta collector gen. nov., sp. nov. An additional species, Lissodendoryx topsenti (de Laubenfels 1930), is moved to Hemimycale, and H. polyboletus comb. nov., nom. nov. is created due to preoccupation by H. topsenti (Burton, 1929). Several of the new species appear to be rare and/or have very restricted distributions, as they were not found at comparative survey sites outside of Carmel Bay. These results illustrate the potential of qualitative presence/absence systematic surveys of understudied taxa to discover and document substantial novel diversity. 

 
more » « less
Award ID(s):
1831937
NSF-PAR ID:
10468341
Author(s) / Creator(s):
;
Publisher / Repository:
Magnolia Press
Date Published:
Journal Name:
Zootaxa
Volume:
5318
Issue:
2
ISSN:
1175-5326
Page Range / eLocation ID:
151 to 194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exploration of the diversity in the diatom genus Homoeocladia across Micronesia revealed several clusters of undescribed species based on variations around several characters. Using ultrastructural data from scanning electron microscopy, we describe seventeen new species in three of these morphological groups. (1) A group with external thickenings includes eight new species with costae and/or bordered areolae on valve face and/or conopea and/or peri-raphe zone, and one with similar areolae but no ornamentation; this group includes the previously described H. jordanii. (2) Large, linear species, resembling H. asteropeae and H. tarangensis; we describe three new species close to the latter. (3) A sinuous-areolae group includes five new species with areola openings shaped like “~”, “s”, or “z” on the valve and/or girdle bands, or both, and leads to reconsideration of the diagnosis of Homoeocladia schefterae and the recognition that the globally widespread species in this complex is H. coacervata sp. nov. The three groups are based solely on morphology and no genetic relationships are implied within or between the groups, other than having the characteristics of the recently redefined genus Homoeocladia. However, the high diversity of species in Homoeocladia suggests the genus is a good candidate to test for species flocks in this region and in at least one other comparable location, incorporating DNA sampling through either culturing or metabarcoding.

     
    more » « less
  2. null (Ed.)
    Small red algal morphologically variable blades have been extensively collected from Hawaiian reefs, but for many specimens their taxonomy remains poorly understood. In surveys of the Papahānaumokuākea Marine National Monument (PMNM) and Main Hawaiian Islands (MHI), we discovered two taxa of undescribed small (< 5 cm) red blades that matched the genera Psaromenia and Meredithia, based on morphology and molecular analyses. Neither genus has been previously recorded in the Hawaiian Islands, and neither group of specimens matched currently described species in these two genera. Accordingly, these specimens are described here as new species within the family Kallymeniaceae. Psaromenia laulamaula sp. nov., exclusively found at mesophotic depths (83–94 m) in PMNM, is easily distinguished from other members of the genus by its comparatively large, procarpic carpogonial branch system and solitary obovate pink-tomagenta blades. Conversely, Meredithia hawaiiensis sp. nov., occurring in both shallow (0–17 m) and mesophotic depths (55 m), has high morphological plasticity, with characters that overlap with other Meredithia species, and can only be distinguished based on DNA sequences. This study provides additional evidence of the extent of diversity in the Kallymeniaceae that is poorly characterized from mesophotic depths and provides further evidence that members of the macroalgal flora contain overlooked biodiversity. 
    more » « less
  3. The arboreal ant genus Tetraponera is widely distributed in the Paleotropics. Five species groups were previously recognized in the Afrotropical region (including Madagascar), and two of these were revised. This paper provides a taxonomic treatment of the remaining species. A survey of the T. allaborans group on the African mainland leads to the recognition of fourteen species: T. clypeata (Emery) (= T. braunsi (Forel) syn. nov.); T. continua (Forel) (= T. claveaui (Santschi) syn. nov.); T. cortina sp. nov.; T. dispar sp. nov.; T. emeryi (Forel) (= T. braunsi durbanensis (Forel) syn. nov.); T. exactor sp. nov.; T. furtiva sp. nov.; T. gerdae (Stitz); T. liengmei (Forel); T. mayri (Forel); T. pedana sp. nov.; T. penzigi (Mayr) (= T. scotti Donisthorpe syn. nov. = T. zavattarii (Menozzi) syn. nov. = T. penzigi praestigiatrix Santschi syn. nov.); T. pumila sp. nov.; and T. tessmanni (Stitz). A full revision of the Malagasy species of the T. allaborans group is deferred, but the following new synonymy is established: T. hysterica (Forel) = T. hysterica inflata (Emery) syn. nov.; T. longula (Emery) = T. sahlbergii deplanata (Forel) syn. nov.; T. mandibularis (Emery) = T. flexuosa (Santschi) syn. nov.; T. morondaviensis (Forel) = T. arrogans (Santschi) syn. nov. = T. demens (Santschi) syn. nov. = T. hysterica dimidiata (Forel) syn. nov.; and T. sahlbergii = T. sahlbergii spuria (Forel) syn. nov. = T. plicatidens (Santschi) syn. nov. In the T. ambigua group the following synonymy is reinstated (syn. rev.): T. ambigua (Emery) = T. erythraea (Emery) = T. bifoveolata (Mayr) = T. angolensis Santschi; and T. ophthalmica (Emery) = T. unidens Santschi. A new species is described in the Madagascar-endemic T. grandidieri group: T. elegans sp. nov. Scrutiny of the T. natalensis group indicates the occurrence of ten species: T. andrei (Mayr), T. anthracina (Santschi), T. caffra (Santschi), T. insularis sp. nov., T. kosi sp. nov., T. mocquerysi (André), T. natalensis (F. Smith), T. redacta sp. nov., T. schulthessi (Santschi), and T. setosa sp. nov. T. insularis is known only from Madagascar, while the other nine species are confined to the African mainland. The following new synonymy is proposed for the T. natalensis group (senior synonym cited first): T. anthracina = T. poultoni Donisthorpe syn. nov. = T. triangularis (Stitz) syn. nov.; T. mocquerysi = T. mocquerysi biozellata (Karavaiev) syn. nov. = T. mocquerysi elongata (Stitz) syn. nov. = T. emacerata (Santschi) syn. nov. = T. triangularis illota (Santschi) syn. nov. = T. ledouxi Terron syn. nov. = T. lemoulti (Santschi) syn. nov. = T. mocquerysi lepida Wheeler syn. nov. = T. monardi (Santschi) syn. nov. = T. emacerata oberbecki (Forel) syn. nov. = T. emacerata odiosa (Forel) syn. nov.; and T. natalensis = T. angusta (Arnold) syn. nov. = T. capensis (F. Smith) syn. nov. = T. natalensis cuitensis (Forel) syn. nov. = T. mocquerysi lutea (Stitz) syn. nov. = T. natalensis obscurata (Emery) syn. nov. = T. prelli (Forel) syn. nov. = T. natalensis usambarensis (Forel) syn. nov. The extensive synonymy under T. mocquerysi and T. natalensis reflects the conviction that previous taxonomists underestimated the extent of intraspecific variation in these taxa, but further study and testing of this conclusion is warranted. An illustrated worker- and queen-based key is provided for all species of Tetraponera occurring in Africa and Madagascar, except the Malagasy members of the T. allaborans group. 
    more » « less
  4. Surveys of Hawaiian macroalgae over the past 15 years have yielded numerous specimens representing species new to science. Calliblepharis yasutakei sp. nov. is here described based on a plant collected at a depth of 98 m from Kapou, Papahânaumokuâkea Marine National Monument, Hawaiʻi. Phylogenetic analyses of three molecular markers (COI, rbcL, and SSU) and analyses of morphological features were used to describe the new species in the family Cystocloniaceae. Calliblepharis yasutakei sp. nov. grouped with C. fimbriata, C. rammediorum, C. occidentalis and C. jolyi in a clade with full support for the rbcL analysis, representing a distinct lineage within the genus. Phylogenetic and vegetative morphological comparisons demonstrated that the new Hawaiian species is most closely related to C. rammediorum from Israel (rbcL similarity of 96.3%), although no female reproductive structures were found to allow a more comprehensive comparison. In order to determine whether C. yasutakei represents the first confirmed report of the genus Calliblepharis in the Hawaiian Islands, phylogenetic and morphological analysis of the Hawaiian Hypnea saidana (=Calliblepharis saidana) specimen accessioned at the Bernice P. Bishop Museum was performed. These analyses demonstrated that this specimen belongs to a new species in the genus Hypnea, which is here described as H. tsudae sp. nov. C. yasutakei, in addition to being a new species, is also reported as the first confirmed record of the genus Calliblepharis in the Hawaiian archipelago, and the description of H. tsudae brings the number of species for this genus in Hawaiʻi to eight. 
    more » « less
  5. Cyanobacteria are crucial ecosystem components in dryland soils. Advances in describing α–level taxonomy are needed to understand what drives their abundance and distribution. We describeTrichotorquatusgen. nov. (Oculatellaceae, Synechococcales, Cyanobacteria) based on four new species isolated from dryland soils including the coastal sage scrub near San Diego, California (USA), the Mojave and Colorado Deserts with sites at Joshua Tree National Park and Mojave National Preserve, California (USA), and the Atacama Desert (Chile). The genus is morphologically characterized by having thin trichomes (<4.5 μm wide), cells both shorter and longer than wide, rarely occurring single and double false branching, necridia appearing singly or in rows, and sheaths with a distinctive collar‐like fraying and widening mid‐filament, the feature for which the genus is named. The genus is morphologically nearly identical withLeptolyngbyasensu stricto but is phylogenetically quite distant from that genus. It is consequently a cryptic genus that will likely be differentiated in future studies based on 16S rRNA sequence data. The type species,T. maritimussp. nov. is morphologically distinct from the other three species,T. coquimbosp. nov.,T. andreisp. nov. andT. ladouxaesp. nov. However, these latter three species are morphologically very close and are considered by the authors to be cryptic species. All species are separated phylogenetically based on sequence of the 16S‐23S ITS region. Three distinct ribosomal operons were recovered from the genus, lending difficulty to recognizing further diversity in this morphologically cryptic genus.

     
    more » « less