- Award ID(s):
- 2031570
- NSF-PAR ID:
- 10468368
- Editor(s):
- Krause, Andreas; Brunskill, Emma; Cho, Kyunghyun; Engelhardt, Barbara; Sabato, Sivan; Scarlett, Jonathan
- Publisher / Repository:
- Proceedings of the 40th International Conference on Machine Learning
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 202
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 13325--13352
- Format(s):
- Medium: X
- Location:
- Hawaii, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Nonlinear state-space models are powerful tools to describe dynamical structures in complex time series. In a streaming setting where data are processed one sample at a time, simultaneous inference of the state and its nonlinear dynamics has posed significant challenges in practice. We develop a novel online learning framework, leveraging variational inference and sequential Monte Carlo, which enables flexible and accurate Bayesian joint filtering. Our method provides an approximation of the filtering posterior which can be made arbitrarily close to the true filtering distribution for a wide class of dynamics models and observation models. Specifically, the proposed framework can efficiently approximate a posterior over the dynamics using sparse Gaussian processes, allowing for an interpretable model of the latent dynamics. Constant time complexity per sample makes our approach amenable to online learning scenarios and suitable for real-time applications.more » « less
-
Abstract Koopman operators and transfer operators represent dynamical systems through their induced linear action on vector spaces of observables, enabling the use of operator-theoretic techniques to analyze nonlinear dynamics in state space. The extraction of approximate Koopman or transfer operator eigenfunctions (and the associated eigenvalues) from an unknown system is nontrivial, particularly if the system has mixed or continuous spectrum. In this paper, we describe a spectrally accurate approach to approximate the Koopman operator on
L 2for measure-preserving, continuous-time systems via a ‘compactification’ of the resolvent of the generator. This approach employs kernel integral operators to approximate the skew-adjoint Koopman generator by a family of skew-adjoint operators with compact resolvent, whose spectral measures converge in a suitable asymptotic limit, and whose eigenfunctions are approximately periodic. Moreover, we develop a data-driven formulation of our approach, utilizing data sampled on dynamical trajectories and associated dictionaries of kernel eigenfunctions for operator approximation. The data-driven scheme is shown to converge in the limit of large training data under natural assumptions on the dynamical system and observation modality. We explore applications of this technique to dynamical systems on tori with pure point spectra and the Lorenz 63 system as an example with mixing dynamics. -
Discovering the underlying dynamics of complex systems from data is an important practical topic. Constrained optimization algorithms are widely utilized and lead to many successes. Yet, such purely data-driven methods may bring about incorrect physics in the presence of random noise and cannot easily handle the situation with incomplete data. In this paper, a new iterative learning algorithm for complex turbulent systems with partial observations is developed that alternates between identifying model structures, recovering unobserved variables, and estimating parameters. First, a causality-based learning approach is utilized for the sparse identification of model structures, which takes into account certain physics knowledge that is pre-learned from data. It has unique advantages in coping with indirect coupling between features and is robust to stochastic noise. A practical algorithm is designed to facilitate causal inference for high-dimensional systems. Next, a systematic nonlinear stochastic parameterization is built to characterize the time evolution of the unobserved variables. Closed analytic formula via efficient nonlinear data assimilation is exploited to sample the trajectories of the unobserved variables, which are then treated as synthetic observations to advance a rapid parameter estimation. Furthermore, the localization of the state variable dependence and the physics constraints are incorporated into the learning procedure. This mitigates the curse of dimensionality and prevents the finite time blow-up issue. Numerical experiments show that the new algorithm identifies the model structure and provides suitable stochastic parameterizations for many complex nonlinear systems with chaotic dynamics, spatiotemporal multiscale structures, intermittency, and extreme events.more » « less
-
null (Ed.)We consider learning a sparse pairwise Markov Random Field (MRF) with continuous valued variables from i.i.d samples. We adapt the algorithm of Vuffray et al. (2019) to this setting and provide finite- sample analysis revealing sample complexity scaling logarithmically with the number of variables, as in the discrete and Gaussian settings. Our approach is applicable to a large class of pairwise MRFs with continuous variables and also has desirable asymptotic properties, including consistency and normality under mild conditions. Further, we establish that the population version of the optimization criterion employed by Vuffray et al. (2019) can be interpreted as local maximum likelihood estimation (MLE). As part of our analysis, we introduce a robust variation of sparse linear regression à la Lasso, which may be of interest in its own right.more » « less
-
We present a new framework to analyze accelerated stochastic mirror descent through the lens of continuous-time stochastic dynamic systems. It enables us to design new algorithms, and perform a unified and simple analysis of the convergence rates of these algorithms. More specifically, under this framework, we provide a Lyapunov function based analysis for the continuous-time stochastic dynamics, as well as several new discrete-time algorithms derived from the continuous-time dynamics. We show that for general convex objective functions, the derived discrete-time algorithms attain the optimal convergence rate. Empirical experiments corroborate our theory.more » « less