skip to main content

Title: The return of GOLUM: improving distributed joint parameter estimation for strongly lensed gravitational waves

Owing to the forecasted improved sensitivity of ground-based gravitational-wave detectors, new research avenues will become accessible. This is the case for gravitational-wave strong lensing, predicted with a non-negligible observation rate in the coming years. However, because one needs to investigate all the event pairs in the data, searches for strongly lensed gravitational waves are often computationally heavy, and one faces high false-alarm rates. In this paper, we present upgrades made to the golum software, making it more reliable while increasing its speed by re-casting the look-up table, imposing a sample control, and implementing symmetric runs on the two lensed images. We show how the recovered posteriors have improved coverage of the parameter space and how we increase the pipeline’s stability. Finally, we show the results obtained by performing a joint analysis of all the events reported until the GWTC-3 catalogue, finding similar conclusions to the ones presented in the literature.

more » « less
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 3088-3098
["p. 3088-3098"]
Sponsoring Org:
National Science Foundation
More Like this

    When travelling from their source to the observer, gravitational waves can get deflected by massive objects along their travel path. For a massive lens and a good source-lens alignment, the wave undergoes strong lensing, leading to several images with the same frequency evolution. These images are separated in time, magnified, and can undergo an overall phase shift. Searches for strongly lensed gravitational waves look for events with similar masses, spins, and sky location and linked through so-called lensing parameters. However, the agreement between these quantities can also happen by chance. To reduce the overlap between background and foreground, one can include lensing models. When doing realistic searches, one does not know which model is the correct one to be used. Using an incorrect model could lead to the non-detection of genuinely lensed events. In this work, we investigate how one can reduce the false alarm probability when searching for strongly lensed events. We focus on the impact of the addition of a model for the lens density profile and investigate the effect of potential errors in the modelling. We show that the risks of false alarm are high without the addition of a lens model. We also show that slight variations in the profile of the lens model are tolerable, but a model with an incorrect assumption about the underlying lens population causes significant errors in the identification process. We also suggest some strategies to improve confidence in the detection of strongly lensed gravitational waves.

    more » « less

    As the number of detected gravitational wave sources increases with increased sensitivity of the gravitational wave observatories, observing strongly lensed pairs of events will become a real possibility. Lensed gravitational wave (GW) events will have very accurately measured time delays and magnification ratios. Suppose we identify the lens system corresponding to a GW event in the electromagnetic domain and also measure the redshifts of the lens and the host galaxy; in that case, we can use the GW event to constrain important astrophysical parameters of the lens system. As most lensing events have image separations that are significantly smaller than the GW event localization uncertainties, we must develop diagnostics that will aid in the robust identification of such lensed events. We define a new statistic based on the joint probability of lensing observables that can be used to discriminate lensed pairs of events from the unlensed ones. To this end, we carry out simulations of lensed GW events to infer the distribution of the relative time delays and relative magnifications subdivided by the type of lensed images. We compare this distribution to a similar one obtained for random unlensed event pairs. Our statistic can improve the search pipelines’ existing ranking approach to down-select event pairs for joint parameter estimates. The distributions we obtain can further be used to define more informative priors in joint parameter estimation analyses for candidate lensed events.

    more » « less

    We describe how gravitational lensing of fast radio bursts (FRBs) is affected by a plasma screen in the vicinity of the lens or somewhere between the source and the observer. Wave passage through a turbulent medium affects gravitational image magnification, lensing probability (particularly for strong magnification events), and the time delay between images. The magnification is suppressed because of the broadening of the angular size of the source due to scattering by the plasma. The time delay between images is modified as the result of different dispersion measures (DM) along photon trajectories for different images. Each of the image light curves is also broadened due to wave scattering so that the images could have distinct temporal profiles. The first two effects are most severe for stellar and sub-stellar mass lens, and the last one (scatter broadening) for lenses and plasma screens at cosmological distances from the source/observer. This could limit the use of FRBs to measure their cosmic abundance. On the other hand, when the time delay between images is large, such that the light curve of a transient source has two or more well-separated peaks, the different DMs along the wave paths of different images can probe density fluctuations in the IGM on scales ≲10−6 rad and explore the patchy reionization history of the universe using lensed FRBs at high redshifts. Different rotation measures (RM) along two-image paths can convert linearly polarized radiation from a source to partial circular polarization.

    more » « less

    Secure confirmation that a gravitational wave (GW) has been gravitationally lensed would bring together these two pillars of General Relativity for the first time. This breakthrough is challenging for many reasons, including: GW sky localization uncertainties dwarf the angular scale of gravitational lensing, the mass and structure of gravitational lenses is diverse, the mass function of stellar remnant compact objects is not yet well constrained, and GW detectors do not operate continuously. We introduce a new approach that is agnostic to the mass and structure of the lenses, compare the efficiency of different methods for lensed GW discovery, and explore detection of lensed kilonova counterparts as a direct method for localizing candidates. Our main conclusions are: (1) lensed neutron star mergers (NS–NS) are magnified into the ‘mass gap’ between NS and black holes, therefore selecting candidates from public GW alerts with high mass gap probability is efficient, (2) the rate of detectable lensed NS–NS will approach one per year in the mid-2020s, (3) the arrival time difference between lensed NS–NS images is $1\, \rm s\lesssim \Delta \mathit{ t}\lesssim 1\, yr$, and thus well-matched to the operations of GW detectors and optical telescopes, (4) lensed kilonova counterparts are faint at peak (e.g. rAB ≃ 24–26 in the mid-2020s), fade quickly ($d\lt 2\, \rm d$), and are detectable with target of opportunity observations with large wide-field telescopes. For example, just ≲ 0.25 per cent of Vera C. Rubin Observatory’s observing time will be sufficient to follow up one well-localized candidate per year. Our predictions also provide a physically well-defined basis for exploring electromagnetically the exciting new ‘mass gap’ discovery space.

    more » « less

    Gamma-ray burst GRB 211211A may have been the result of a neutron star merger at ≈350 Mpc. However, none of the LIGO–Virgo detectors were operating at the time. We show that the gravitational-wave signal from a GRB 211211A-like binary neutron star inspiral in the next LIGO–Virgo–KAGRA observing run (O4) would be below the conventional detection threshold, however a coincident gamma-ray burst observation would provide necessary information to claim a statistically significant multimessenger observation. We calculate that with O4 sensitivity, approximately $11{{\ \rm per\ cent}}$ of gamma-ray bursts within 600 Mpc will produce a confident association between the gravitational-wave binary neutron star inspiral signature and the prompt gamma-ray signature. This corresponds to a coincident detection rate of $0.22^{+8.3}_{-0.22}\,\mathrm{yr^{-1}}$, where the uncertainties are the 90 per cent confidence intervals arising from uncertainties in the absolute merger rate, beaming and jet-launching fractions. These increase to approximately $34{{\ \rm per\ cent}}$ and $0.71^{+26.8}_{-0.70}\,\mathrm{yr^{-1}}$ with proposed O5 sensitivity. We show that the above numbers do not depend significantly on the number of gravitational-wave observatories operating with the specific sensitivity. That is, the number of confident joint gamma-ray burst and gravitational-wave detections is only marginally improved with two or three detectors operating compared to a single detector. It is therefore worth considering whether one detector with sufficient sensitivity (post O4) should remain in sky-watch mode at all times to elucidate the true nature of GRB 211211A-like events, a proposal we discuss in detail.

    more » « less