Wind energy is one of the major sources of renewable energy. Countries around the world are increasingly deploying large wind farms that can generate a significant amount of clean energy. A wind farm consists of many turbines, often spread across a large geographical area. Modern wind turbines are equipped with meteorological sensors. The wind farm control center monitors the turbine sensors and adjusts the power generation parameters for optimal power production. The turbine sensors are prone to cyberattacks and with the evolving of large wind farms and their share in the power generation, it is crucial to analyze such potential cyber threats. In this paper, we present a formal framework to verify the impact of false data injection attack on the wind farm meteorological sensor measurements. The framework designs this verification as a maximization problem where the adversary's goal is to maximize the wind farm power production loss with its limited attack capability. Moreover, the adversary wants to remain stealthy to the wind farm bad data detection mechanism while it is launching its cyberattack on the turbine sensors. We evaluate the proposed framework for its threat analysis capability as well as its scalability by executing experiments on synthetic test cases.
more »
« less
Power Generation Maximization Control Framework for Ocean Current Turbine Farms
In this work, we propose a control framework for farms consisting of ocean current turbines (OCT). The ocean current turbine systems used in this farm are tethered to the ground of the ocean, and their depth can be adjusted online based on the maximum ocean current power available. To maximize the average power generated by the farm, the ocean current turbine wake interactions must be taken into account, and also each turbine in the farm should achieve these changes in the position reference with minimum control energy. Considering additional limitations such as keeping the tethering cables away from each other and avoiding collisions between the turbines, an advanced optimization framework is developed to achieve the maximum power generation in a specified region. Tracking of the reference trajectories by the ocean current turbine systems is achieved by model predictive control (MPC). A case study is presented to highlight the significant estimated improvement in the average energy generated by the farm using the proposed framework and control methodology.
more »
« less
- Award ID(s):
- 1809404
- PAR ID:
- 10468468
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8718-9
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Power tracking is an emerging application for wind farm control designs that allows farms to participate in a wider range of grid services, such as secondary frequency regulation. Control designs that enable large wind farms to follow a time-varying power trajectory are complicated by aerodynamic interactions that make it impossible to decouple upstream wind turbine control actions from downstream power production. This coupling is particularly important in applications where the reference trajectory is changing faster than, or at a similar rate as, the propagation of turbine wakes through the farm. In this work we overcome these difficulties by using a dynamic wake model that accounts for wake expansion, advection, and multi-wake interactions within a model-based receding horizon controller for coordinated control of a large multi-turbine wind farm. An ensemble Kalman filter is employed for state estimation and error correction at the turbine level. We implement the controller in high-fidelity numerical simulations of a wind farm with 84 turbines and then test the controlled farm's ability to track a power reference signal. The results demonstrate the ability of the control algorithm to track two types of power reference signals used by a US independent system operator.more » « less
-
Improved integration of wind farms into frequency regulation services is vital for increasing renewable energy production while ensuring power system stability. This work generalizes a recently proposed model-based receding horizon wind farm controller for secondary frequency regulation to arbitrary wind farm layouts and augments the controller to enable power modulation through storage of kinetic energy in the rotor. The new design explicitly includes actuation of blade pitch and generator torque, which facilitates implementation in existing farms as it takes advantage of current wind turbine control loops. This generalized control design improves control authority by individually controlling each turbine and using kinetic energy stored in the rotor in a coordinated manner to achieve farm level control goals. Numerical results demonstrate the effectiveness of this approach; in particular, the controller achieves accurate power tracking and reduces loss of revenue in the bulk power market by requiring less setpoint reduction (derate) than the power level control range.more » « less
-
null (Ed.)This work focuses on the optimization of performance and profitability of a wind farm carried out by means of an economic model and Reynolds-Averaged Navier-Stokes (RANS) simulations of wind turbine wakes. Axisymmetric RANS simulations of isolated wind turbine wakes are leveraged with a quadratic super-positioning model to estimate wake interactions within wind farms. The resulting velocity field is used with an actuator disk model to predict power production from each turbine in the wind farm. Design optimization is performed by considering a site in North Texas, whose wind resource statistics are obtained from a meteorological tower. The RANS solver provides capabilities to simulate different incoming wind turbulence intensities and, hence, the wind farm optimization is performed by taking the daily cycle of the atmospheric stability into account. The objective functional of the optimization problem is the levelized cost of energy (LCoE) encompassing capital cost, operation and maintenance costs, land cost and annual power production. At the first level of the optimization problem, the wind farm gross capacity is determined by considering three potential turbine types with different rated power. Subsequently, the optimal wind farm layout is estimated by varying the uniform spacing between consecutive turbine rows. It is found that increasing turbine rated power, the wind farm profitability is enhanced. Substituting a wind farm of 24 turbines of 2.3-MW rated power with 18, 3-MW turbines could reduce the LCoE of about 1.56 $/MWh, while maintaining a similar gross capacity factor. The optimization of the spacing between turbine rows was found to be sensitive to the land cost. For a land cost of 0.05 $/m2, the layout could be designed with a spacing between 6 to 15 rotor diameters without any significant effect on the LCoE, while an increased land cost of 0.1 $/m2 leads to an optimal spacing of about 6 rotor diameters.more » « less
-
Collective wind farm flow control, where wind turbines are operated in an individually suboptimal strategy to benefit the aggregate farm, has demonstrated potential to reduce wake interactions and increase farm energy production. However, existing wake models used for flow control often estimate the thrust and power of yaw-misaligned turbines using simplified empirical expressions that require expensive calibration data and do not extrapolate accurately between turbine models. The thrust, wake velocity deficit, wake deflection and power of a yawed wind turbine depend on its induced velocity. Here, we extend classical one-dimensional momentum theory to model the induction of a yaw-misaligned actuator disk. Analytical expressions for the induction, thrust, initial wake velocities and power are developed as a function of the yaw angle ( $$\gamma$$ ) and thrust coefficient. The analytical model is validated against large eddy simulations of a yawed actuator disk. Because the induction depends on the yaw and thrust coefficient, the power generated by a yawed actuator disk will always be greater than a $$\cos ^3(\gamma )$$ model suggests. The power lost due to yaw misalignment depends on the thrust coefficient. An analytical expression for the thrust coefficient that maximizes power, depending on the yaw, is developed and validated. Finally, using the developed induction model as an initial condition for a turbulent far-wake model, we demonstrate how combining wake steering and thrust (induction) control can increase array power, compared to either independent steering or induction control, due to the joint dependence of the induction on the thrust coefficient and yaw angle.more » « less
An official website of the United States government
