skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative transcriptomic analysis of thermally stressed Arabidopsis thaliana meiotic recombination mutants
Abstract BackgroundMeiosis is a specialized cell division that underpins sexual reproduction in most eukaryotes. During meiosis, interhomolog meiotic recombination facilitates accurate chromosome segregation and generates genetic diversity by shuffling parental alleles in the gametes. The frequency of meiotic recombination inArabidopsishas a U-shaped curve in response to environmental temperature, and is dependent on the Type I, crossover (CO) interference-sensitive pathway. The mechanisms that modulate recombination frequency in response to temperature are not yet known. ResultsIn this study, we compare the transcriptomes of thermally-stressed meiotic-stage anthers frommsh4andmus81mutants that mediate the Type I and Type II meiotic recombination pathways, respectively. We show that heat stress reduces the number of expressed genes regardless of genotype. In addition,msh4mutants have a distinct gene expression pattern compared tomus81and wild type controls. Interestingly,ASY1,which encodes a HORMA domain protein that is a component of meiotic chromosome axes, is up-regulated in wild type andmus81but not inmsh4. In addition,SDSthe meiosis-specific cyclin-like gene,DMC1the meiosis-specific recombinase,SYN1/REC8the meiosis-specific cohesion complex component, andSWI1which functions in meiotic sister chromatid cohesion are up-regulated in all three genotypes. We also characterize 51 novel, previously unannotated transcripts, and show that their promoter regions are associated with A-rich meiotic recombination hotspot motifs. ConclusionsOur transcriptomic analysis ofmsh4andmus81mutants enhances our understanding of how the Type I and Type II meiotic CO pathway respond to environmental temperature stress and might provide a strategy to manipulate recombination levels in plants.  more » « less
Award ID(s):
1844264
PAR ID:
10468490
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
BMC Genomics
Date Published:
Journal Name:
BMC Genomics
Volume:
22
Issue:
1
ISSN:
1471-2164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In meiosis, one round of DNA replication followed by two rounds of chromosome segregation halves the ploidy of the original cell. Accurate chromosome segregation in meiosis I depends on recombination between homologous chromosomes. Sister centromeres attach to the same spindle pole in this division and only segregate in meiosis II. We used budding yeast to select for mutations that produced viable spores in the absence of recombination. The most frequent mutations inactivated CLB4, which encodes one of four B-type cyclins. In two wild yeast isolates, Y55 and SK1, but not the W303 laboratory strain, deleting CLB4 causes premature sister centromere separation and segregation in meiosis I and frequent termination of meiosis after a single division, demonstrating a novel role for Clb4 in meiotic chromosome dynamics and meiotic progression. This role depends on the genetic background since meiosis in W303 is largely independent of CLB4. 
    more » « less
  2. Meiotic recombination rates vary in response to intrinsic and extrinsic factors. Recently, heat stress has been shown to reveal plasticity in recombination rates in Drosophila pseudoobscura. Here, a combination of molecular genotyping and X-linked recessive phenotypic markers were used to investigate differences in recombination rates due to heat stress. In addition, haplotypes from the genetic crosses were compared to test if they deviated from equal proportions, which would indicate viability selection. To avoid this potential bias, SNP genotyping markers overlapping the regions assayed with mutant markers were used to further investigate recombination rate. Interestingly, skews in haplotype frequency were consistent with the fixation of alleles in the wild-type stocks used that are unfit at high temperature. Evidence of viability selection due to heat stress in the wild-type haplotypes was most apparent on days 7–9 when more mutant non-crossover haplotypes were recovered in comparison to wild type (p < 0.0001). Recombination analysis using SNP markers showed days 9–10 as significantly different due to heat stress in 2 pairs of consecutive SNP markers (p = 0.018; p = 0.015), suggesting that during this time period the recombination rate is most sensitive to heat stress. This peak timing for recombination plasticity is consistent with Drosophila melanogaster based on a comparison of similarly timed key meiotic events, enabling future mechanistic work of temperature stress on recombination rate. 
    more » « less
  3. During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon ( Pogona vitticeps ), two geckos ( Paroedura picta and Coleonyx variegatus ) and the painted turtle ( Chrysemys picta ). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet , which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis. 
    more » « less
  4. Jaramillo-Lambert, Aimee (Ed.)
    Meiotic recombination plays an important role in ensuring proper chromosome segregation during meiosis I through the creation of chiasmata that connect homologous chromosomes. Recombination plays an additional role in evolution by creating new allelic combinations. Organisms display species-specific crossover patterns, but how these patterns are established is poorly understood.Drosophila mauritianadisplays a different meiotic recombination pattern compared toDrosophila melanogaster, withD. mauritianaexperiencing a reduced centromere effect, the suppression of recombination emanating from the centromeres. To evaluate the contribution of the synaptonemal complex (SC) C(3)G protein to these recombination rate differences, theD. melanogasterallele was replaced withD. mauritiana c(3)Gcoding sequence. We found that theD. mauritianaC(3)G could interact with theD. melanogasterSC machinery to build full length tripartite SC and chromosomes segregated accurately, indicating sufficient crossovers were generated. However, the placement of crossovers was altered, displaying an increase in frequency in the centromere-proximal euchromatin indicating a decrease in the centromere effect, similar to that observed inD. mauritianafemales. Recovery of chromatids with more than one crossover was also increased, likely due to the larger chromosome span now available for crossovers. As replacement of a single gene mediated a strong shift of one species’ crossover pattern towards another species, it indicates a small number of discrete factors may have major influence on species-specific crossover patterning. Additionally, it demonstrates the SC, a structure known to be required for crossover formation in many species, is likely one of these discrete factors. 
    more » « less
  5. Abstract The life cycle of biomedical and agriculturally relevant eukaryotic microorganisms involves complex transitions between proliferative and non-proliferative states such as dormancy, mating, meiosis, and cell division. New drugs, pesticides, and vaccines can be created by targeting specific life cycle stages of parasites and pathogens. However, defining the structure of a microbial life cycle often relies on partial observations that are theoretically assembled in an ideal life cycle path. To create a more quantitative approach to studying complete eukaryotic life cycles, we generated a deep learning-driven imaging framework to track microorganisms across sexually reproducing generations. Our approach combines microfluidic culturing, life cycle stage-specific segmentation of microscopy images using convolutional neural networks, and a novel cell tracking algorithm, FIEST, based on enhancing the overlap of single cell masks in consecutive images through deep learning video frame interpolation. As proof of principle, we used this approach to quantitatively image and compare cell growth and cell cycle regulation across the sexual life cycle ofSaccharomyces cerevisiae. We developed a fluorescent reporter system based on a fluorescently labeled Whi5 protein, the yeast analog of mammalian Rb, and a new High-Cdk1 activity sensor, LiCHI, designed to report during DNA replication, mitosis, meiotic homologous recombination, meiosis I, and meiosis II. We found that cell growth preceded the exit from non-proliferative states such as mitotic G1, pre-meiotic G1, and the G0 spore state during germination. A decrease in the total cell concentration of Whi5 characterized the exit from non-proliferative states, which is consistent with a Whi5 dilution model. The nuclear accumulation of Whi5 was developmentally regulated, being at its highest during meiotic exit and spore formation. The temporal coordination of cell division and growth was not significantly different across three sexually reproducing generations. Our framework could be used to quantitatively characterize other single-cell eukaryotic life cycles that remain incompletely described. An off-the-shelf user interfaceYeastvisionprovides free access to our image processing and single-cell tracking algorithms. 
    more » « less