From Carbene-Dithiolene Zwitterion Mediated B–H Bond Activation to BH 3 ·SMe 2 -Assisted Boron–Boron Bond Formation
- Award ID(s):
- 2153978
- PAR ID:
- 10468594
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Organometallics
- Volume:
- 42
- Issue:
- 23
- ISSN:
- 0276-7333
- Format(s):
- Medium: X Size: p. 3328-3333
- Size(s):
- p. 3328-3333
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Size-selected negatively-charged boron clusters (B n − ) have been found to be planar or quasi-planar in a wide size range. Even though cage structures emerged as the global minimum at B 39 − , the global minimum of B 40 − was in fact planar. Only in the neutral form did the B 40 borospherene become the global minimum. How the structures of larger boron clusters evolve is of immense interest. Here we report the observation of a bilayer B 48 − cluster using photoelectron spectroscopy and first-principles calculations. The photoelectron spectra of B 48 − exhibit two well-resolved features at low binding energies, which are used as electronic signatures to compare with theoretical calculations. Global minimum searches and theoretical calculations indicate that both the B 48 − anion and the B 48 neutral possess a bilayer-type structure with D 2h symmetry. The simulated spectrum of the D 2h B 48 − agrees well with the experimental spectral features, confirming the bilayer global minimum structure. The bilayer B 48 −/0 clusters are found to be highly stable with strong interlayer covalent bonding, revealing a new structural type for size-selected boron clusters. The current study shows the structural diversity of boron nanoclusters and provides experimental evidence for the viability of bilayer borophenes.more » « less
-
null (Ed.)We report the facile activation of aryl E–H (ArEH; E = N, O, S; Ar = Ph or C 6 F 5 ) or ammonia N–H bonds via coordination-induced bond weakening to a redox-active boron center in the complex, (1 − ). Substantial decreases in E–H bond dissociation free energies (BDFEs) are observed upon substrate coordination, enabling subsequent facile proton-coupled electron transfer (PCET). A drop of >50 kcal mol −1 in H 2 N–H BDFE upon coordination was experimentally determined.more » « less
-
When attached to a tetrazole, a TtR 3 group (Tt = C, Si; R = H, F) engages in a Tt⋯N tetrel bond (TtB) with the Lewis base NCM (M = Li, Na). MP2/aug-cc-pVTZ calculations find that the Si⋯N TtB is rather strong, more than 20 kcal mol −1 for SiH 3 , and between 46 and 53 kcal mol −1 for SiF 3 . The C⋯N TtBs are relatively weaker, less than 8 kcal mol −1 . All of these bonds are intensified when a BH 3 or BF 3 molecule forms a triel bond to a N atom of the tetrazole ring, particularly for the C⋯N TtB, up to 11 kcal mol −1 . In these triads, the SiR 3 group displaces far enough along the line toward the base that it may be thought of as half transferred.more » « less
An official website of the United States government
