skip to main content


Title: Modulating poisson’s ratio in flexible honeycombs by density and architecture gradations
Abstract

Zero Poisson’s ratio structures are a new class of mechanical metamaterials wherein the absence of lateral deformations allows the structure to adapt and conform their geometries to desired shapes with minimal interventions. These structures have gained attention in large deformation applications where shape control is a key performance attribute, with examples including but not limited to shape morphing, soft robotics, and flexible electronics. The present study introduces an experimentally driven approach that leads to the design and development of (near) zero Poisson’s ratio structures with considerable load-bearing capacities through concurrent density and architecture gradations in hybrid honeycombs created from hexagonal and re-entrant cells. The strain-dependent Poisson’s ratios in hexagonal and re-entrant honeycombs with various cell wall thicknesses have been characterized experimentally. A mathematical approach is then proposed and utilized to create hybrid structures wherein the spatial distribution of different cell shapes and densities leads to the development of honeycombs with minimal lateral deformations under compressive strains as high as 0.7. Although not considered design criteria, the load-bearing and energy absorption capacities of the hybrid structures are shown to be comparable with those of uniform cell counterparts. Finally, the new hybrid structures indicate lesser degrees of instability (in the form of cell buckling and collapse) due to the self-constraining effects imposed internally by the adjacent cell rows in the structures.

 
more » « less
NSF-PAR ID:
10468612
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Engineering Research Express
Volume:
5
Issue:
4
ISSN:
2631-8695
Format(s):
Medium: X Size: Article No. 045007
Size(s):
["Article No. 045007"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cultivated natural fibers have a huge possibility for green and sustainable reinforcement for polymers, but their limited load-bearing ability and flammability prevent them from wide applications in composites. According to the beam theory, normal stress is the maximum at the outermost layers but zero at the mid-plane under bending (with (non)linear strain distribution). Shear stress is the maximum at the mid-plane but manageable for most polymers. Accordingly, a laminated composite made of hybrid fiber-reinforced shape memory photopolymer was developed, incorporating strong synthetic glass fibers over a weak core of natural hemp fibers. Even with a significant proportion of natural hemp fibers, the mechanical properties of the hybrid composites were close to those reinforced solely with glass fibers. The composites exhibited good shape memory properties, with at least 52% shape fixity ratio and 71% shape recovery ratio, and 24 MPa recovery stress. After 40 s burning, a hybrid composite still maintained 83.53% of its load carrying capacity. Therefore, in addition to largely maintaining the load carrying capacity through the hybrid reinforcement design, the use of shape memory photopolymer endowed a couple of new functionalities to the composites: the plastically deformed laminated composite beam can largely return to its original shape due to the shape memory effect of the polymer matrix, and the flame retardancy of the polymer matrix makes the flammable hemp fiber survive the fire hazard. The findings of this study present exciting prospects for utilizing low-strength and flammable natural fibers in multifunctional load-bearing composites that possess both flame retardancy and shape memory properties.

     
    more » « less
  2. Minimally invasive endovascular therapy (MIET) is an innovative technique that utilizes percutaneous access and transcatheter implantation of medical devices to treat vascular diseases. However, conventional devices often face limitations such as incomplete or suboptimal treatment, leading to issues like recanalization in brain aneurysms, endoleaks in aortic aneurysms, and paravalvular leaks in cardiac valves. In this study, we introduce a new metastructure design for MIET employing re-entrant honeycomb structures with negative Poisson's ratio (NPR), which are initially designed through topology optimization and subsequently mapped onto a cylindrical surface. Using ferromagnetic soft materials, we developed structures with adjustable mechanical properties called magnetically activated structures (MAS). These magnetically activated structures can change shape under noninvasive magnetic fields, letting them fit against blood vessel walls to fix leaks or movement issues. The soft ferromagnetic materials allow the stent design to be remotely controlled, changed, and rearranged using external magnetic fields. This offers accurate control over stent placement and positioning inside blood vessels. We performed magneto-mechanical simulations to evaluate the proposed design's performance. Experimental tests were conducted on prototype beams to assess their bending and torsional responses to external magnetic fields. The simulation results were compared with experimental data to determine the accuracy of the magneto-mechanical simulation model for ferromagnetic soft materials. After validating the model, it was used to analyze the deformation behavior of the plane matrix and cylindrical structure designs of the Negative Poisson's Ratio (NPR) metamaterial. The results indicate that the plane matrix NPR metamaterial design exhibits concurrent vertical and horizontal expansion when subjected to an external magnetic field. In contrast, the cylindrical structure demonstrates simultaneous axial and radial expansion under the same conditions. The preliminary findings demonstrate the considerable potential and practicality of the proposed methodology in the development of magnetically activated MIET devices, which offer biocompatibility, a diminished risk of adverse reactions, and enhanced therapeutic outcomes. Integrating ferromagnetic soft materials into mechanical metastructures unlocks promising opportunities for designing stents with adjustable mechanical properties, propelling the field towards more sophisticated minimally invasive vascular interventions. 
    more » « less
  3. null (Ed.)
    Drywall partition walls are susceptible to damage at low-level drifts, and hence reducing such damage is key to achieving seismic resiliency in buildings. Prior tests on drywall partition walls have shown that slip track connection detailing leads to better performance than other detailing, such as fully-fixed connections. However, in all prior testing, partition wall performance was evaluated using a unidirectional loading protocol (either in-plane or out-of-plane) or in shake table testing. Moreover, all details are susceptible to considerable damage to wall intersections. Two phases of the test have been performed at the Natural Hazards Engineering Research Infrastructure (NHERI) Lehigh Equipment Facility to develop improved details of drywall partition walls under bidirectional loading. The partition walls were tested alongside a cross-laminated timber (CLT) post-tensioned rocking wall subassembly, wherein the CLT system is under development as a resilient lateral system for tall timber buildings. In the Phase 1, the slip behavior of conventional slip-track detailing was compared to telescoping detailing (track-within-a-track deflection assembly). In the Phase 2, two details for reducing the wall intersection damage were evaluated on traditional slip-track C-shaped walls. First, a corner gap detail was tested. This detail incorporates a gap through the wall intersection to reduce the collision damage at two intersecting walls. Second, a distributed gap detail was tested. In this approach, the aim was to reduce damage by using more frequent control joints through the length of the wall. All walls were tested under a bidirectional loading protocol with three sub-cycles: in-plane, a bi-directional hexagonal load path, and a bi-directional hexagonal load path with an increase in the out-of-plane drift. This loading protocol allows for studying the bidirectional behavior of walls and evaluating the effect of out-of-plane drift on the partition wall resisting force. In the Phase 1, the telescoping detailing performed better than conventional slip track detailing because it eliminated damage to the framing. In Phase 2, the distributed gap detailing delayed damage to about 1% story drift. For the corner gap detailing, the sacrificial corner bead detached at low drifts, but the wall itself was damage-free until 2.5% drift. Bidirectional loading was found to have an insignificant influence on the in-plane resistance of the walls, and the overall resistance of the walls was trivial compared to the CLT rocking. 
    more » « less
  4. This paper discusses an x-braced metamaterial lattice with the unusual property of exhibiting bandgaps in their deformation decay spectrum, and, hence, the capacity for reprogramming deformation patterns. The design of polarizing non-local lattice arising from the scenario of repeated zero eigenvalues of a system transfer matrix is also introduced. We develop a single mode fundamental solution for lattices with multiple degrees of freedom per node in the form of static Raleigh waves. These waves can be blocked at the material boundary when the solution is constructed with the polarization vectors of the bandgap. This single mode solution is used as a basis to build analytical displacement solutions for any applied essential and natural boundary condition. Subsequently, we address the bandgap design, leading to a comprehensive approach for predicting deformation pattern behavior within the interior of an x-braced plane lattice. Overall, we show that the stiffness parameter and unit-cell aspect ratio of the x-braced lattice can be tuned to completely block or filter static boundary deformations, and to reverse the dependence of deformation or strain energy decay parameter on the Raleigh wavenumber, a behavior known as the reverse Saint Venant’s edge effect (RSV). These findings could guide future research in engineering smart materials and structures with interesting functionalities, such as load pattern recognition, strain energy redistribution, and stress alleviation. 
    more » « less
  5. The proliferation of ordered cellular structures in industrial and technological applications is justified by their superior mechanical performance, including tunable energy absorption strategies and potential multifunctionality. This research evaluates the mechanical response of composite lattice structures fabricated using vat photopolymerization additive manufacturing process and printable particulate composite materials. Several generations of modified printable resins are prepared by hybridizing flexible resin with varying glass microballoons reinforcement weight percentages. Multifaceted characterization regiments highlight the process–property–performance interrelationship by submitting printed composite structures to quasi‐static and impact‐loading scenarios combined with digital stills and high‐speed photography, respectively. Image analyses of optical and scanning electron micrographs quantify the dimensional accuracy of the composite lattice structures with cylindrical and hexagonal cellular geometries. The mechanical characterization uncovers the effect of cell geometry and reinforcement on the global structural behavior, eliciting differences in load‐bearing capacity, local strain developments, and structural densification. Exploratory digital image correlation supports the global structural deformations, revealing their relationship with the developed local strain state within the unit cells. The outcomes of this research elucidate the effect of strain rate, unit cell geometry, and reinforcing ratios on the structural performance of composite lattice structures at the macro‐ and microstructure levels.

     
    more » « less