skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Industry Perspective – What does Industry Need to Accelerate Drug Product and Process Development?
Award ID(s):
2232197
PAR ID:
10468647
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Pharmaceutical Research
Volume:
41
Issue:
1
ISSN:
0724-8741
Format(s):
Medium: X Size: p. 7-11
Size(s):
p. 7-11
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we present recent advances, current and future market trends in industrial robotics. Artificial Intelligence has evolved as the main feature to characterize Industry 4.0, Next-generation robotics utilize this feature to perform tasks collaboratively, as opposed to the currently deployed industrial robots, which were designed mainly for automation, isolated in cages, and highly-controlled environments. Current data show that China takes the lead in the industrial robotics market with 48% of the top-ten market in 2019. The electronics sector took the lead in robot-deployment in East Asia, and is continuously increasing in deploying industrial robotics in other parts of the world. Studies on the challenges associated with this technology, show that the main concern is the lack of trained labor to handle the technologies in next generation industrial robotics. 
    more » « less
  2. Driven by the fact that a great majority of STEM PhD graduates will be employed in non-academic jobs, primarily in industry (defined broadly to include private corporations, national labs, defense organizations, etc.), there is growing recognition that the present format of doctoral training does not prepare them sufficiently for a career outside academia. In response to this need, recently a new student-centered model of STEM doctorate, Pasteur Partners PhD (P3), was developed based on use-inspired research. Industry-university partnership is a requirement of this model, which calls for concerted participation of industry experts in the training of students through identification of industry-relevant research problems, co-advising about how to approach their practical solutions, and training for other non-technical skills that are crucial for success in industry. An assessment of student demand and their experience with P3’s non-traditional features, support of university administration, and the challenges felt by interested faculty advisers during its implementation at Lehigh University were presented previously. This paper completes P3 program’s assessment by analyzing the feedback provided by industry scientists who have served as co-advisers to students. The specific objective of the present study is to establish not only the benefits to students but also the advantages these collaborations offer to the industry researchers themselves as well as their organizations. Accordingly, we solicited feedback about the experience of the industry co-advisers from serving as mentors of P3 fellows. Briefly, the mentors were generally positive about their engagement with students as research advisers and hosts for experiments in their labs. The mentors from national labs were especially appreciative of the opportunity to expand the scope of their own research program as a result of these interactions. They also highlighted the effectiveness of pre-program internships in fostering long-term research productivity, as well as the training provided in the corresponding courses such as project management. With regard to improving the program, the industry mentors expressed a desire for clearer expectations regarding their role in mentoring students, particularly when students return to university. A detailed analysis of the feedback provided by industry mentors and its implications for further improving the P3 model, indeed the state of STEM doctoral training, are presented. The conclusions of this study are expected to have broad impact beyond the P3 model as they provide valuable insight into the mutual benefits of industry-university partnership for doctoral education. 
    more » « less
  3. Driven by the fact that a great majority of STEM PhD graduates will be employed in non-academic jobs, primarily in industry (defined broadly to include private corporations, national labs, defense organizations, etc.), there is a growing recognition that the present format of doctoral training does not prepare them sufficiently for a career outside academia. In response to this need, recently a new student-centered model of STEM doctorate, Pasteur Partners PhD (P3), was developed based on use-inspired research [3]. Industry-university partnership is a requirement of this model, which calls for concerted participation of industry experts in the training of students through identification of industry-relevant research problems, co-advising about how to approach their practical solutions, and training for other non-technical skills that are crucial for success in industry. An assessment of student demand and their experience with P3’s non-traditional features, support of university administration, and the challenges felt by interested faculty advisers during its implementation at Lehigh University were presented previously. This paper completes P3 program’s assessment by analyzing the feedback provided by industry scientists who have served as co-advisers to students. The specific objective of the present study is to establish not only the benefits to students but also the advantages these collaborations offer to the industry researchers themselves as well as their organizations. Accordingly, we solicited feedback about the experience of the industry co-advisers from serving as mentors of P3 fellows. Briefly, the mentors were generally positive about their engagement with students as research advisers and hosts for experiments in their labs. The mentors from national labs were especially appreciative of the opportunity to expand the scope of their own research program as a result of these interactions. They also highlighted the effectiveness of pre-program internships in fostering long-term research productivity, as well as the training provided in the corresponding courses such as project management. With regard to improving the program, the industry mentors expressed a desire for clearer expectations regarding their role in mentoring students, particularly when students return to university. A detailed analysis of the feedback provided by industry mentors and its implications for further improving the P3 model, indeed the state of STEM doctoral training, are presented. The conclusions of this study are expected to have broad impact beyond the P3 model as they provide valuable insight into the mutual benefits of industry-university partnership for doctoral education. 
    more » « less
  4. Abstract Robotic automation in construction has created the need for new competencies that will enable the workforce to engage with robots safely and effectively. However, differing perceptions between industry professionals and academia make aligning academic programs with industry needs challenging. This study evaluates these perceptions to guide the design of HRC training programs. A three-round Delphi study was conducted separately with panels of industry professionals and academic experts to assess their views on HRC competencies in construction. The findings revealed that both panels identified human–robot interfaces, HRC safety and standards, robot control systems, and construction robot applications as the top five HRC knowledge areas. Industry professionals also emphasized task planning knowledge, while academic experts focused on HRC ethics. Key HRC skills include effective communication, safety management, technical proficiency, and compliance with regulations and standards, with industry professionals prioritizing proficiency in task planning and academics emphasizing human–robot interface proficiency. Both expert panels prioritized teamwork, continuous learning, problem-solving, communication, and adaptability as top-rated HRC abilities. This study contributes to knowledge by defining key HRC competencies and identifying differences in priorities between industry and academia. These insights can guide the development of academic curricula that better align with industry needs, supporting the creation of training programs that equip the workforce with the competencies required for safe and effective robotic collaboration. The study also promotes collaboration between industry and academia, fostering innovation in HRC and robotics in construction. Future research directions are proposed to explore innovative training methods to equip the future workforce with HRC competencies. 
    more » « less