skip to main content


Title: Improving NLP Model Performance on Small Educational Data Sets Using Self-Augmentation
Computer-supported education studies can perform two important roles. They can allow researchers to gather important data about student learning processes, and they can help students learn more efficiently and effectively by providing automatic immediate feedback on what the students have done so far. The evaluation of student work required for both of these roles can be relatively easy in domains like math, where there are clear right answers. When text is involved, however, automated evaluations become more difficult. Natural Language Processing (NLP) can provide quick evaluations of student texts. However, traditional neural network approaches require a large amount of data to train models with enough accuracy to be useful in analyzing student responses. Typically, educational studies collect data but often only in small amounts and with a narrow focus on a particular topic. BERT-based neural network models have revolutionized NLP because they are pre-trained on very large corpora, developing a robust, contextualized understanding of the language. Then they can be “fine-tuned” on a much smaller set of data for a particular task. However, these models still need a certain base level of training data to be reasonably accurate, and that base level can exceed that provided by educational applications, which might contain only a few dozen examples. In other areas of artificial intelligence, such as computer vision, model performance on small data sets has been improved by “data augmentation” — adding scaled and rotated versions of the original images to the training set. This has been attempted on textual data; however, augmenting text is much more difficult than simply scaling or rotating images. The newly generated sentences may not be semantically similar to the original sentence, resulting in an improperly trained model. In this paper, we examine a self-augmentation method that is straightforward and shows great improvements in performance with different BERT-based models in two different languages and on two different tasks that have small data sets. We also identify the limitations of the self-augmentation procedure.  more » « less
Award ID(s):
2017000
NSF-PAR ID:
10468768
Author(s) / Creator(s):
; ;
Editor(s):
Jovanovic, Jelena; Chounta, Irene-Angelica; Uhomoibhi, James; McLaren, Bruce
Publisher / Repository:
scitepress.org
Date Published:
Subject(s) / Keyword(s):
["Educational Texts, Natural Language Processing, BERT, Data Augmentation, Text Augmentation, Imbalanced Data Sets"]
Format(s):
Medium: X
Location:
15th International Conference on Computer Supported Education, Prague, Czech Republic
Sponsoring Org:
National Science Foundation
More Like this
  1. Wang, N. (Ed.)
    In education, intelligent learning environments allow students to choose how to tackle open-ended tasks while monitoring performance and behavior, allowing for the creation of adaptive support to help students overcome challenges. Timely feedback is critical to aid students’ progression toward learning and improved problem-solving. Feedback on text-based student responses can be delayed when teachers are overloaded with work. Automated evaluation can provide quick student feedback while easing the manual evaluation burden for teachers in areas with a high teacher-to-student ratio. Current methods of evaluating student essay responses to questions have included transformer-based natural language processing models with varying degrees of success. One main challenge in training these models is the scarcity of data for student-generated data. Larger volumes of training data are needed to create models that perform at a sufficient level of accuracy. Some studies have vast data, but large quantities are difficult to obtain when educational studies involve student-generated text. To overcome this data scarcity issue, text augmentation techniques have been employed to balance and expand the data set so that models can be trained with higher accuracy, leading to more reliable evaluation and categorization of student answers to aid teachers in the student’s learning progression. This paper examines the text-generating AI model, GPT-3.5, to determine if prompt-based text-generation methods are viable for generating additional text to supplement small sets of student responses for machine learning model training. We augmented student responses across two domains using GPT-3.5 completions and used that data to train a multilingual BERT model. Our results show that text generation can improve model performance on small data sets over simple self-augmentation. 
    more » « less
  2. The commonsense natural language inference (CNLI) tasks aim to select the most likely follow-up statement to a contextual description of ordinary, everyday events and facts. Current approaches to transfer learning of CNLI models across tasks require many labeled data from the new task. This paper presents a way to reduce this need for additional annotated training data from the new task by leveraging symbolic knowledge bases, such as ConceptNet. We formulate a teacher-student framework for mixed symbolic-neural reasoning, with the large-scale symbolic knowledge base serving as the teacher and a trained CNLI model as the student. This hybrid distillation process involves two steps. The first step is a symbolic reasoning process. Given a collection of unlabeled data, we use an abductive reasoning framework based on Grenander's pattern theory to create weakly labeled data. Pattern theory is an energy-based graphical probabilistic framework for reasoning among random variables with varying dependency structures. In the second step, the weakly labeled data, along with a fraction of the labeled data, is used to transfer-learn the CNLI model into the new task. The goal is to reduce the fraction of labeled data required. We demonstrate the efficacy of our approach by using three publicly available datasets (OpenBookQA, SWAG, and HellaSWAG) and evaluating three CNLI models (BERT, LSTM, and ESIM) that represent different tasks. We show that, on average, we achieve 63% of the top performance of a fully supervised BERT model with no labeled data. With only 1000 labeled samples, we can improve this performance to 72%. Interestingly, without training, the teacher mechanism itself has significant inference power. The pattern theory framework achieves 32.7% accuracy on OpenBookQA, outperforming transformer-based models such as GPT (26.6%), GPT-2 (30.2%), and BERT (27.1%) by a significant margin. We demonstrate that the framework can be generalized to successfully train neural CNLI models using knowledge distillation under unsupervised and semi-supervised learning settings. Our results show that it outperforms all unsupervised and weakly supervised baselines and some early supervised approaches, while offering competitive performance with fully supervised baselines. Additionally, we show that the abductive learning framework can be adapted for other downstream tasks, such as unsupervised semantic textual similarity, unsupervised sentiment classification, and zero-shot text classification, without significant modification to the framework. Finally, user studies show that the generated interpretations enhance its explainability by providing key insights into its reasoning mechanism. 
    more » « less
  3. Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended math questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training. 
    more » « less
  4. Mitrovic, A ; Bosch, N (Ed.)
    Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended math questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training. 
    more » « less
  5. Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-theart approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these approaches have several key limitations, including i) they use pre-trained language models that are not well-adapted to educational subject domains and/or student-generated text and ii) they almost always train one model per question, ignoring the linkage across question and result in a significant model storage problem due to the size of advanced language models. In this paper, we study the problem of automatic short answer grading for students’ responses to math questions and propose a novel framework for this task. First, we use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model and fine-tune it on the downstream task of student response grading. Second, we use an in-context learning approach that provides scoring examples as input to the language model to provide additional context information and promote generalization to previously unseen questions. We evaluate our framework on a real-world dataset of student responses to open-ended math questions and show that our framework (often significantly) outperform existing approaches, especially for new questions that are not seen during training. 
    more » « less