skip to main content


Title: Investigating Future Arctic Sea Ice Loss and Near‐Surface Wind Speed Changes Related to Surface Roughness Using the Community Earth System Model
Abstract

The Arctic is undergoing a pronounced and rapid transformation in response to changing greenhouse gasses, including reduction in sea ice extent and thickness. There are also projected increases in near‐surface Arctic wind. This study addresses how the winds trends may be driven by changing surface roughness and/or stability in different Arctic regions and seasons, something that has not yet been thoroughly investigated. We analyze 50 experiments from the Community Earth System Model Version 2 (CESM2) Large Ensemble and five experiments using CESM2 with an artificially decreased sea ice roughness to match that of the open ocean. We find that with a smoother surface there are higher mean wind speeds and slower mean ice speeds in the autumn, winter, and spring. The artificially reduced surface roughness also strongly impacts the wind speed trends in autumn and winter, and we find that atmospheric stability changes are also important contributors to driving wind trends in both experiments. In contrast to the clear impacts on winds, the sea ice mean state and trends are statistically indistinguishable, suggesting that near‐surface winds are not major drivers of Arctic sea ice loss. Two major results of this work are: (a) the near‐surface wind trends are driven by changes in both surface roughness and near‐surface atmospheric stability that are themselves changing from sea ice loss, and (b) the sea ice mean state and trends are driven by the overall warming trend due to increasing greenhouse gas emissions and not significantly impacted by coupled feedbacks with the surface winds.

 
more » « less
Award ID(s):
2043727
NSF-PAR ID:
10468834
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
128
Issue:
20
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent climate change in the Arctic has been rapid and dramatic, leading to numerous physical and societal consequences. Many studies have investigated these ongoing and projected future changes across a range of climatic variables, but surprisingly little attention has been paid to wind speed, despite its known importance for sea ice motion, ocean wave heights, and coastal erosion. Here we analyzed future trends in Arctic surface wind speed and its relationship with sea ice cover among CMIP5 global climate models. There is a strong anticorrelation between climatological sea ice concentration and wind speed in the early 21st-century reference climate, and the vast majority of models simulate widespread future strengthening of surface winds over the Arctic Ocean (annual multi-model mean trend of up to 0.8 m s−1 or 13%). Nearly all models produce an inverse relationship between projected changes in sea ice cover and wind speed, such that grid cells with virtually total ice loss almost always experience stronger winds. Consistent with the largest regional ice losses during autumn and winter, the greatest increases in future wind speeds are expected during these two seasons, with localized strengthening up to 23%. As in other studies, stronger surface winds cannot be attributed to tighter pressure gradients but rather to some combination of weakened atmospheric stability and reduced surface roughness as the surface warms and melts. The intermodel spread of wind speed changes, as expressed by the two most contrasting model results, appears to stem from differences in the treatment of surface roughness. 
    more » « less
  2. Abstract To examine the atmospheric responses to Arctic sea-ice variability in the Northern Hemisphere cold season (October to following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily-varying sea-ice, sea-surface temperature, and radiative forcings prescribed during the 1979-2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multi-model ensemble mean (MMEM) shows decreasing sea-level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea-ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drives a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual co-variability between sea-ice extent in the Barents-Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the co-variability in MMEMs. The interannual sea-ice decline followed by a negative North Atlantic Oscillation-like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea-ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship. 
    more » « less
  3. Keynote points • Thermal expansion from a warming ocean and land ice melt are the main causes of the accelerating global rise in the mean sea level. • Global warming is also affecting many circulation systems. The Atlantic meridional overturning circulation has already weakened and will most likely continue to do so in the future. The impacts of ocean circulation changes include a regional rise in sea levels, changes in the nutrient distribution and carbon uptake of the ocean and feedbacks with the atmosphere, such as altering the distribution of precipitation. • More than 90 per cent of the heat from global warming is stored in the global ocean. Oceans have exhibited robust warming since the 1950s from the surface to a depth of 2,000 m. The proportion of ocean heat content has more than doubled since the 1990s compared with long-term trends. Ocean warming can be seen in most of the global ocean, with a few regions exhibiting long-term cooling. • The ocean shows a marked pattern of salinity changes in multidecadal observations, with surface and subsurface patterns providing clear evidence of a water cycle amplification over the ocean. That is manifested in enhanced salinities in the near-surface, high-salinity subtropical regions and freshening in the low-salinity regions such as the West Pacific Warm Pool and the poles. • An increase in atmospheric CO2 levels, and a subsequent increase in carbon in the oceans, has changed the chemistry of the oceans to include changes to pH and aragonite saturation. A more carbon-enriched marine environment, especially when coupled with other environmental stressors, has been demonstrated through field studies and experiments to have negative impacts on a wide range of organisms, in particular those that form calcium carbonate shells, and alter biodiversity and ecosystem structure. • Decades of oxygen observations allow for robust trend analyses. Long-term measurements have shown decreases in dissolved oxygen concentrations for most ocean regions and the expansion of oxygen-depleted zones. A temperature-driven solubility decrease is responsible for most near-surface oxygen loss, though oxygen decrease is not limited to the upper ocean and is present throughout the water column in many areas. • Total sea ice extent has been declining rapidly in the Arctic, but trends are insignificant in the Antarctic. In the Arctic, the summer trends are most striking in the Pacific sector of the Arctic Ocean, while, in the Antarctic, the summer trends show increases in the Weddell Sea and decreases in the West Antarctic sector of the Southern Ocean. Variations in sea ice extent result from changes in wind and ocean currents. 
    more » « less
  4. Abstract

    This study investigates the stratospheric response to Arctic sea ice loss and subsequent near-surface impacts by analyzing 200-member coupled experiments using the Whole Atmosphere Community Climate Model version 6 (WACCM6) with preindustrial, present-day, and future sea ice conditions specified following the protocol of the Polar Amplification Model Intercomparison Project. The stratospheric polar vortex weakens significantly in response to the prescribed sea ice loss, with a larger response to greater ice loss (i.e., future minus preindustrial) than to smaller ice loss (i.e., future minus present-day). Following the weakening of the stratospheric circulation in early boreal winter, the coupled stratosphere–troposphere response to ice loss strengthens in late winter and early spring, projecting onto a negative North Atlantic Oscillation–like pattern in the lower troposphere. To investigate whether the stratospheric response to sea ice loss and subsequent surface impacts depend on the background oceanic state, ensemble members are initialized by a combination of varying phases of Atlantic multidecadal variability (AMV) and interdecadal Pacific variability (IPV). Different AMV and IPV states combined, indeed, can modulate the stratosphere–troposphere responses to sea ice loss, particularly in the North Atlantic sector. Similar experiments with another climate model show that, although strong sea ice forcing also leads to tighter stratosphere–troposphere coupling than weak sea ice forcing, the timing of the response differs from that in WACCM6. Our findings suggest that Arctic sea ice loss can affect the stratospheric circulation and subsequent tropospheric variability on seasonal time scales, but modulation by the background oceanic state and model dependence need to be taken into account.

    Significance Statement

    This study uses new-generation climate models to better understand the impacts of Arctic sea ice loss on the surface climate in the midlatitudes, including North America, Europe, and Siberia. We focus on the stratosphere–troposphere pathway, which involves the weakening of stratospheric winds and its downward coupling into the troposphere. Our results show that Arctic sea ice loss can affect the surface climate in the midlatitudes via the stratosphere–troposphere pathway, and highlight the modulations from background mean oceanic states as well as model dependence.

     
    more » « less
  5. null (Ed.)
    Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface oceanobservations of polynyas in winter, thereby impeding new insights into theevolution of these ice factories through the dark austral months. Here, wedescribe oceanic observations during multiple katabatic wind events duringMay 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularlyexceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m. During these events, conductivity–temperature–depth (CTD)profiles revealed bulges of warm, salty water directly beneath the oceansurface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budget reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production. 
    more » « less