skip to main content


This content will become publicly available on October 10, 2024

Title: Complex consequences of disturbance on canopy plant communities of world forests: a review and synthesis
Summary

Epiphytes and their associated biota are increasingly recognized as contributing to biodiversity and to filling critical ecosystem functions in world forests. However, the attributes that have made them successful in canopy environments also make them vulnerable to natural and human‐induced disturbances. Drawing upon ecological frameworks to understand disturbance, I categorized and synthesized the drivers and the consequences of disturbances on epiphytic materials. Across all impacts, disturbance agents were significantly more likely to lead to negative, rather than positive, effects in both tropical and temperate locales. Significantly more studies reported negative effects on abundance, diversity, community composition and connectivity, but some studies showed that disturbances enhanced these attributes. Although particular disturbance agents did not differently influence individual consequences, they explained a significant portion of variation in aggregated totals. Surprisingly, relative to human disturbances, natural disturbances were more likely to lead to negative effects. Many studies provided recommendations for effective societal responses to mitigate negative impacts, such as retaining large, old trees in forestry operations, patch‐clearing for epiphyte harvest, maximizing forest fragment size, using epiphytes as bioindicators of disturbance, and applying principles of community forestry to land management. Future actions should also include communication of these results to policymakers and land managers.

 
more » « less
Award ID(s):
2146844
NSF-PAR ID:
10468851
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
240
Issue:
4
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 1366-1380
Size(s):
["p. 1366-1380"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Negative impacts of discrete, short‐term disturbances to wildlife populations are well‐documented. The consequences of more gradual environmental change are less apparent and harder to study because they play out over longer periods and are often indirect in their action. Yet, they can drive the decline of wildlife populations even in seemingly pristine and currently well‐protected habitats. One such environmental change is a successional shift in a community's species composition as it regenerates from disturbance caused by past human land use. Early and middle successional tree species often provide key foods to folivores and frugivores, but the abundance of these resources drops as the forest matures, with adverse repercussions for these consumers. Our 44‐year record (1974–2018) of howler monkey (Alouatta palliata) group sizes and demographic composition from Barro Colorado Island, Panama, a protected reserve, documents an example of this phenomenon. After 70 years of relative stability, the mean size of howler monkey groups exhibited a marked decline, beginning in 2003. This downward trajectory in group size has continued through the most recent census in 2018. The composition of howler groups also changed significantly during the study period, with the patterns of decline differing among age/sex classes. There is no evidence that these changes were caused by increased rates of emigration, group fission, predation, parasitism, or disease. Rather, they are best explained by an island‐wide, succession‐driven decline in the densities of two species of free‐standing fig trees,Ficus yoponensisandF. insipida, which together were providing ~36% ofBCIhowlers’ annual diet.

    Abstract in Spanish is available with online material.

     
    more » « less
  2. Many natural disturbances have a strong climate forcing, and concern is rising about how ecosystems will respond to disturbance regimes to which they are not adapted. Novelty can arise either as attributes of the disturbance regime (e.g., frequency, severity, duration) shift beyond their historical ranges of variation or as new disturbance agents not present historically emerge. How much novelty ecological systems can absorb and whether changing disturbance regimes will lead to novel outcomes is determined by the ecological responses of communities, which are also subject to change. Powerful conceptual frameworks exist for anticipating consequences of novel disturbance regimes, but these remain challenging to apply in real-world settings. Nonlinear relationships (e.g., tipping points, feedbacks) are of particular concern because of their disproportionate effects. Future research should quantify the rise of novelty in disturbance regimes and assess the capacity of ecosystems to respond to these changes. Novel disturbance regimes will be potent catalysts for ecological change. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  3. Abstract

    Anthropogenic disturbances are widely recognized for their far-reaching consequences on the survival and reproduction of wildlife, but we understand comparatively little about their effects on the social lives of group-living animals. Here we examined these short-term changes in affiliative behavior as part of a long-term study on a human-tolerant and socially flexible population of California ground squirrels (Otospermophilus beecheyi). We used social network analysis to examine short-term changes in affiliative behavior and individual consistency in response to disturbances by humans, domestic dogs, or a natural predator (the coyote). Overall, juveniles were more involved than adults in affiliative interactions, but the short-term directional effects of these acute disturbances on social cohesion varied by disturbance type. Human and dog presence reduced aboveground connectivity, particularly for juveniles, whereas disturbances by coyotes generally promoted it. Beyond these effects, we also detected non-random responses to disturbances, though individuals were not very consistent in their directional response to different disturbance types. Our results demonstrate the flexible changes in social behavior triggered by short-term disturbances imposed by humans and other threats. More generally, our findings elucidate the underappreciated sensitivity of animal social interactions to short-term ecological disturbances, raising key questions about their consequences on the social lives of animals.

     
    more » « less
  4. Abstract

    In the context of global decline in old‐growth forest, historical ecology is a valuable tool to derive insights into vegetation legacies and dynamics and develop new conservation and restoration strategies. In this cross‐disciplinary study, we integrate palynology (Lago del Pesce record), history, dendrochronology, and historical and contemporary land cover maps to assess drivers of vegetation change over the last millennium in a Mediterranean mountain forest (Pollino National Park, southern Italy) and discuss implications in conservation ecology. The study site hosts a remnant beech–fir (Fagus sylvaticaAbies alba) mixed forest, a priority habitat for biodiversity conservation in Europe. In the 10th century, the pollen record showed an open environment that was quickly colonized by silver fir when sociopolitical instabilities reduced anthropogenic pressures in mountain forests. The highest forest cover and biomass was reached between the 14th and the 17th centuries following land abandonment due to recurring plague pandemics. This rewilding process is also reflected in the recruitment history of Bosnian pine (Pinus heldreichii) in the subalpine elevation belt. Our results show that human impacts have been one of the main drivers of silver fir population contraction in the last centuries in the Mediterranean, and that the removal of direct human pressure led to ecosystem renovation. Since 1910, the Rubbio State Forest has locally protected and restored the mixed beech–fir forest. The institutions in 1972 for the Rubbio Natural Reserve and in 1993 for Pollino National Park have guaranteed the survival of the silver fir population, demonstrating the effectiveness of targeted conservation and restoration policies despite a warming climate. Monitoring silver fir populations can measure the effectiveness of conservation measures. In the last decades, the abandonment of rural environments (rewilding) along the mountains of southern Italy has reduced the pressure on ecosystems, thus boosting forest expansion. However, after four decades of natural regeneration and increasing biomass, pollen influx and forest composition are still far from the natural attributes of the medieval forest ecosystem. We conclude that long‐term forest planning encouraging limited direct human disturbance will lead toward rewilding and renovation of carbon‐rich and highly biodiverse Mediterranean old‐growth forests, which will be more resistant and resilient to future climate change.

     
    more » « less
  5. Abstract

    Frequent fire and grazing by megafauna are important determinants of tallgrass prairie plant community structure. However, fire suppression and removal of native grazers have altered these natural disturbance regimes and changed grassland plant communities with potential long‐term consequences for soil carbon (C) and nitrogen (N) storage. We investigated multidecade changes in soil C and N pools in response to contrasting long‐term burning and grazing treatments. Fire suppression with or without grazers and exclusion of grazers in annually burned prairie increased soil C content and shifted the δ13C signature of soil C over time, concomitant with changes in plant community composition. Soil δ13C values indicated that increased soil C content was associated with an increased contribution from plants using a C3photosynthetic pathway (i.e., woody shrubs) under fire suppression. Soil N content also increased when fire was suppressed, relative to frequently burned grassland, but the rate of increase was slower when grazers were present. Additionally, changes in δ15N values suggested that grazing increased the openness of the N cycle, presumably due to greater N losses. By coupling long‐term fire and grazing treatments with plant community data and soil samples archived over three decades, we demonstrate that human‐caused changes to natural disturbance regimes in a tallgrass prairie significantly alter soil C and N cycles through belowground changes associated with shifts in the plant community. Since natural disturbance regimes have been altered in grasslands across the world, our results are relevant for understanding the long‐term biogeochemical consequences of these ongoing land use changes.

     
    more » « less