skip to main content


Title: Hydrodynamical simulations of circumbinary accretion: balance between heating and cooling
ABSTRACT

Hydrodynamical interaction in circumbinary discs (CBDs) plays a crucial role in various astrophysical systems, ranging from young stellar binaries to supermassive black hole binaries in galactic centres. Most previous simulations of binary-disc systems have adopted locally isothermal equation of state. In this study, we use the grid-based code Athena++ to conduct a suite of two-dimensional viscous hydrodynamical simulations of circumbinary accretion on a Cartesian grid, resolving the central cavity of the binary. The gas thermodynamics is treated by thermal relaxation towards an equilibrium temperature (based on the constant − β cooling ansatz, where β is the cooling time in units of the local Keplerian time). Focusing on equal mass, circular binaries in CBDs with (equilibrium) disc aspect ratio H/R = 0.1, we find that the cooling of the disc gas significantly influences the binary orbital evolution, accretion variability, and CBD morphology, and the effect depends sensitively on the disc viscosity prescriptions. When adopting a constant kinematic viscosity, a finite cooling time (β ≳ 0.1) leads to a binary inspiral as opposed to an outspiral and the CBD cavity becomes more symmetric. When adopting a dynamically varying α-viscosity, binary inspiral only occurs within a narrow range of cooling time (corresponding to β around 0.5).

 
more » « less
NSF-PAR ID:
10468854
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3570-3588
Size(s):
["p. 3570-3588"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrodynamical interactions between binaries and circumbinary disks (CBDs) play an important role in a variety of astrophysical systems, from young stellar binaries to supermassive black hole binaries. Previous simulations of CBDs have mostly employed locally isothermal equations of state. We carry out 2D viscous hydrodynamic simulations of CBDs around equal-mass, circular binaries, treating the gas thermodynamics by thermal relaxation toward equilibrium temperature (the constant-βcooling ansatz, whereβis the cooling time in units of the local Keplerian time). As an initial study, we use the grid-based codeAthena++on a polar grid, covering an extended disk outside the binary co-orbital region. We find that with a longer cooling time, the accretion variability is gradually suppressed, and the morphology of the CBD becomes more symmetric. The disk also shows evidence of hysteresis behavior depending on the initial conditions. Gas cooling also affects the rate of angular momentum transfer between the binary and the CBD, where given our adopted disk thickness and viscosity (H/r∼ 0.1 andα∼ 0.1), the binary orbit expands while undergoing accretion for mostβvalues between 0 and 4.0 except over a narrow range of intermediateβvalues. The validity of using a polar grid excising the central domain is also discussed.

     
    more » « less
  2. ABSTRACT

    The upcoming Laser Interferometer Space Antenna (LISA) is expected to detect gravitational waves (GWs) from massive black hole binaries (MBHB). Finding the electromagnetic (EM) counterparts for these GW events will be crucial for understanding how and where MBHBs merge, measuring their redshifts, constraining the Hubble constant and the graviton mass, and for other novel science applications. However, due to poor GW sky localization, multiwavelength, time-dependent EM models are needed to identify the right host galaxy. We studied merging MBHBs embedded in a circumbinary disc (CBD) using high-resolution two-dimensional simulations, with a Γ-law equation of state, incorporating viscous heating, shock heating, and radiative cooling. We simulate the binary from large separation until after merger, allowing us to model the decoupling of the binary from the CBD. We compute the EM signatures and identify distinct features before, during, and after the merger. Our main result is a multiband EM signature: we find that the MBHB produces strong thermal X-ray emission until 1–2 d prior to the merger. However, as the binary decouples from the CBD, the X-ray-bright minidiscs rapidly shrink in size, become disrupted, and the accretion rate drops precipitously. As a result, the thermal X-ray luminosity drops by orders of magnitude, and the source remains X-ray dark for several days, regardless of any post-merger effects such as GW recoil or mass-loss. Looking for the abrupt spectral change where the thermal X-ray disappears is a tell-tale EM signature of LISA mergers that does not require extensive pre-merger monitoring.

     
    more » « less
  3. ABSTRACT

    The shrinking of a binary orbit driven by the interaction with a gaseous circumbinary disc, initially advocated as a potential way to catalyse the binary merger, has recently been debated in the case of geometrically thick (i.e. with H/R ≳ 0.1) discs. However, a clear consensus is still missing mainly owing to numerical limitations, such as fixed orbit binaries or lack of resolution inside the cavity carved by the binary in its circumbinary disc. In this work, we assess the importance of evolving the binary orbit by means of hydrodynamic simulations performed with the code gizmo in meshless finite mass mode. In order to model the interaction between equal mass circular binaries and their locally isothermal circumbinary discs, we enforce hyper-Lagrangian resolution inside the cavity. We find that fixing the binary orbit ultimately leads to an overestimate of the gravitational torque that the gas exerts on the binary and an underestimate of the torque due to the accretion of material on to the binary components. Furthermore, we find that the modulation of the accretion rate on the binary orbital period is strongly suppressed in the fixed orbit simulation, while it is clearly present in the live binary simulations. This has potential implications for the prediction of the observable periodicities in massive black hole binary candidates.

     
    more » « less
  4. null (Ed.)
    Abstract Among the potential milliHz gravitational wave (GW) sources for the upcoming space-based interferometer LISA are extreme- or intermediate-mass ratio inspirals (EMRI/IMRIs). These events involve the coalescence of supermassive black holes in the mass range 105M⊙ ≲ M ≲ 107M⊙ with companion BHs of much lower masses. A subset of E/IMRIs are expected to occur in the accretion discs of active galactic nuclei (AGN), where torques exerted by the disc can interfere with the inspiral and cause a phase shift in the GW waveform. Here we use a suite of two-dimensional hydrodynamical simulations with the moving-mesh code DISCO to present a systematic study of disc torques. We measure torques on an inspiraling BH and compute the corresponding waveform deviations as a function of the binary mass ratio q ≡ M2/M1, the disc viscosity (α), and gas temperature (or equivalently Mach number; $\mathcal {M}$). We find that the absolute value of the gas torques is within an order of magnitude of previously determined planetary migration torques, but their precise value and sign depends non-trivially on the combination of these parameters. The gas imprint is detectable by LISA for binaries embedded in AGN discs with surface densities above $\Sigma _0\ge 10^{4-6} \rm \, g cm^{-2}$, depending on q, α and $\mathcal {M}$. Deviations are most pronounced in discs with higher viscosities, and for E/IMRIs detected at frequencies where LISA is most sensitive. Torques in colder discs exhibit a noticeable dependence on the GW-driven inspiral rate as well as strong fluctuations at late stages of the inspiral. Our results further suggest that LISA may be able to place constraints on AGN disc parameters and the physics of disc-satellite interaction. 
    more » « less
  5. null (Ed.)
    ABSTRACT Massive black hole (MBH) binary inspiral time-scales are uncertain, and their spins are even more poorly constrained. Spin misalignment introduces asymmetry in the gravitational radiation, which imparts a recoil kick to the merged MBH. Understanding how MBH binary spins evolve is crucial for determining their recoil velocities, their gravitational wave (GW) waveforms detectable with Laser Interferometer Space Antenna, and their retention rate in galaxies. Here, we introduce a sub-resolution model for gas- and gravitational wave (GW)-driven MBH binary spin evolution using accreting MBHs from the Illustris cosmological hydrodynamic simulations. We also model binary inspiral via dynamical friction, stellar scattering, viscous gas drag, and GW emission. Our model assumes that the circumbinary disc always removes angular momentum from the binary. It also assumes differential accretion, which causes greater alignment of the secondary MBH spin in unequal-mass mergers. We find that 47 per cent of the MBHs in our population merge by z = 0. Of these, 19 per cent have misaligned primaries and 10 per cent have misaligned secondaries at the time of merger in our fiducial model with initial eccentricity of 0.6 and accretion rates from Illustris. The MBH misalignment fraction depends strongly on the accretion disc parameters, however. Reducing accretion rates by a factor of 100, in a thicker disc, yields 79 and 42 per cent misalignment for primaries and secondaries, respectively. Even in the more conservative fiducial model, more than 12 per cent of binaries experience recoils of >500 km s−1, which could displace them at least temporarily from galactic nuclei. We additionally find that a significant number of systems experience strong precession. 
    more » « less