ABSTRACT We assess the possibility of detecting both eccentricity and gas effects (migration and accretion) in the gravitational wave (GW) signal from LISA massive black hole binaries at redshift $z=1$. Gas induces a phase correction to the GW signal with an effective amplitude ($$C_{\rm g}$$) and a semimajor axis dependence (assumed to follow a power-law with slope $$n_{\rm g}$$). We use a complete model of the LISA response and employ a gas-corrected post-Newtonian inspiral-only waveform model TaylorF2Ecc. By using the Fisher formalism and Bayesian inference, we constrain $$C_{\rm g}$$ together with the initial eccentricity $$e_0$$, the total redshifted mass $$M_z$$, the primary-to-secondary mass ratio q, the dimensionless spins $$\chi _{1,2}$$ of both component BHs, and the time of coalescence $$t_c$$. We find that simultaneously constraining $$C_{\rm g}$$ and $$e_0$$ leads to worse constraints on both parameters with respect to when considered individually. For a standard thin viscous accretion disc around $$M_z=10^5~{\rm M}_{\odot }$$, $q=8$, $$\chi _{1,2}=0.9$$, and $$t_c=4$$ years MBHB, we can confidently measure (with a relative error of $$\lt 50$$ per cent) an Eddington ratio $${\rm f}_{\rm Edd}\sim 0.1$$ for a circular binary and $${\rm f}_{\rm Edd}\sim 1$$ for an eccentric system assuming $$\mathcal {O}(10)$$ stronger gas torque near-merger than at the currently explored much-wider binary separations. The minimum measurable eccentricity is $$e_0\gtrsim 10^{-2.75}$$ in vacuum and $$e_0\gtrsim 10^{-2}$$ in gas. A weak environmental perturbation ($${\rm f}_{\rm Edd}\lesssim 1$$) to a circular binary can be mimicked by an orbital eccentricity during inspiral, implying that an electromagnetic counterpart would be required to confirm the presence of an accretion disc. 
                        more » 
                        « less   
                    
                            
                            Evolution of gas disc–embedded intermediate mass ratio inspirals in the LISA band
                        
                    
    
            Abstract Among the potential milliHz gravitational wave (GW) sources for the upcoming space-based interferometer LISA are extreme- or intermediate-mass ratio inspirals (EMRI/IMRIs). These events involve the coalescence of supermassive black holes in the mass range 105M⊙ ≲ M ≲ 107M⊙ with companion BHs of much lower masses. A subset of E/IMRIs are expected to occur in the accretion discs of active galactic nuclei (AGN), where torques exerted by the disc can interfere with the inspiral and cause a phase shift in the GW waveform. Here we use a suite of two-dimensional hydrodynamical simulations with the moving-mesh code DISCO to present a systematic study of disc torques. We measure torques on an inspiraling BH and compute the corresponding waveform deviations as a function of the binary mass ratio q ≡ M2/M1, the disc viscosity (α), and gas temperature (or equivalently Mach number; $$\mathcal {M}$$). We find that the absolute value of the gas torques is within an order of magnitude of previously determined planetary migration torques, but their precise value and sign depends non-trivially on the combination of these parameters. The gas imprint is detectable by LISA for binaries embedded in AGN discs with surface densities above $$\Sigma _0\ge 10^{4-6} \rm \, g cm^{-2}$$, depending on q, α and $$\mathcal {M}$$. Deviations are most pronounced in discs with higher viscosities, and for E/IMRIs detected at frequencies where LISA is most sensitive. Torques in colder discs exhibit a noticeable dependence on the GW-driven inspiral rate as well as strong fluctuations at late stages of the inspiral. Our results further suggest that LISA may be able to place constraints on AGN disc parameters and the physics of disc-satellite interaction. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1715661
- PAR ID:
- 10225558
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 501
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3540 - 3557
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Using grid-based hydrodynamics simulations and analytic modeling, we compute the electromagnetic (EM) signatures of gravitational wave (GW) driven inspirals of massive black hole binaries that accrete gas from circumbinary discs, exploring the effects of varying gas temperatures, viscosity laws, and binary mass ratios. Our main finding is that active galactic nuclei (AGNs) that host inspiraling binaries can exhibit two sub-types of long-term secular variability patterns: Type-A events which dim before merger and brighten afterward, and Type-B events which brighten before merger and dim afterward. In both types, the merger coincides with a long-lasting chromatic change of the AGN appearance. The sub-types correspond to the direction of angular momentum transfer between the binary and the disc, and could thus have correlated GW signatures if the gas-induced torque can be inferred from GW phase drift measurements by LISA. The long-term brightness trends are caused by steady weakening of the disc-binary torque that accompanies orbital decay, it induces a hysteresis effect whereby the disc ‘remembers’ the history of the binary’s contraction. We illustrate the effect using a reduced model problem of an axisymmetric thin disc subjected at its inner edge to the weakening torque of an inspiraling binary. The model problem yields a new class of self-similar disc solutions, which capture salient features of the multidimensional hydrodynamics simulations. We use these solutions to derive variable AGN disc emission signatures within years to decades of massive black hole binary mergers in AGNs. Spectral changes of Mrk 1018 might have been triggered by an inspiral-merger event.more » « less
- 
            The dynamics and electromagnetic signatures of accretion in unequal-mass binary black hole inspiralsABSTRACT We present a theoretical study of the gravitational wave (GW) driven inspirals of accreting black hole binaries with mass $$M = 10^7 M_\odot$$ and mass ratios between $$10^{-3}$$ and $$10^{-1}$$. Our results are based on analytic estimates, and grid-based hydrodynamics simulations run for many thousands of binary orbits before the merger. We show that the GW inspiral is evident in the light curves and colour evolution of a binary-hosting quasar over years to decades before a merger. The long-term electromagnetic (EM) signature is characterized by a gradual UV brightening and X-ray dimming, followed by an X-ray disappearance hours to days before the GW burst, and finally, a years-like re-brightening as the disc relaxes and refuels the remnant black hole. These time-scales are surprisingly insensitive to the normalization of the kinematic viscosity in the disc. The spectrum of quasi-thermal disc emission shows two peaks: one in the UV and another in the X-ray, associated with the outer and circum-secondary discs, respectively; emission from the inner disc is suppressed because the secondary consumes most of the inflowing gas. We discuss implications for real-time and archival EM follow-up of GW bursts detected by LISA.more » « less
- 
            ABSTRACT Accretion discs around supermassive black holes are promising sites for stellar mass black hole mergers detectable with LIGO. Here we present the results of Monte Carlo simulations of black hole mergers within 1-d AGN disc models. For the spin distribution in the disc bulk, key findings are: (1) The distribution of χeff is naturally centred around $$\tilde{\chi }_{\rm eff} \approx 0.0$$, (2) the width of the χeff distribution is narrow for low natal spins. For the mass distribution in the disc bulk, key findings are: (3) mass ratios $$\tilde{q} \sim 0.5\!-\!0.7$$, (4) the maximum merger mass in the bulk is $$\sim 100\!-\!200\, \mathrm{M}_{\odot }$$, (5) $$\sim 1{{\ \rm per\ cent}}$$ of bulk mergers involve BH $$\gt 50\, \mathrm{M}_{\odot }$$ with (6) $$\simeq 80{{\ \rm per\ cent}}$$ of bulk mergers are pairs of first generation BH. Additionally, mergers at a migration trap grow an IMBH with typical merger mass ratios $$\tilde{q}\sim 0.1$$. Ongoing LIGO non-detections of black holes $$\gt 10^{2}\, \mathrm{M}_{\odot }$$ puts strong limits on the presence of migration traps in AGN discs (and therefore AGN disc density and structure) as well as median AGN disc lifetime. The highest merger rate occurs for this channel if AGN discs are relatively short-lived (≤1 Myr) so multiple AGN episodes can happen per Galactic nucleus in a Hubble time.more » « less
- 
            null (Ed.)ABSTRACT Advanced LIGO and Advanced Virgo are detecting a large number of binary stellar origin black hole (BH) mergers. A promising channel for accelerated BH merger lies in active galactic nucleus (AGN) discs of gas around supermasssive BHs. Here, we investigate the relative number of compact object (CO) mergers in AGN disc models, including BH, neutron stars (NS), and white dwarfs, via Monte Carlo simulations. We find the number of all merger types in the bulk disc grows ∝ t1/3 which is driven by the Hill sphere of the more massive merger component. Median mass ratios of NS–BH mergers in AGN discs are $$\tilde{q}=0.07\pm 0.06(0.14\pm 0.07)$$ for mass functions (MF) M−1(− 2). If a fraction fAGN of the observed rate of BH–BH mergers (RBH–BH) come from AGN, the rate of NS–BH (NS–NS) mergers in the AGN channel is $${R}_{\mathrm{ BH}\!-\!\mathrm{ NS}} \sim f_{\mathrm{ AGN}}[10,300]\, \rm {Gpc}^{-3}\, \rm {yr}^{-1},({\mathit{ R}}_{NS\!-\!NS} \le \mathit{ f}_{AGN}400\, \rm {Gpc}^{-3}\, \rm {yr}^{-1}$$). Given the ratio of NS–NS/BH–BH LIGO search volumes, from preliminary O3 results the AGN channel is not the dominant contribution to observed NS–NS mergers. The number of lower mass gap events expected is a strong function of the nuclear MF and mass segregation efficiency. CO merger ratios derived from LIGO can restrict models of MF, mass segregation, and populations embedded in AGN discs. The expected number of electromagnetic (EM) counterparts to NS–BH mergers in AGN discs at z < 1 is $$\sim [30,900]\, {\rm {yr}}^{-1}(f_{\mathrm{ AGN}}/0.1)$$. EM searches for flaring events in large AGN surveys will complement LIGO constraints on AGN models and the embedded populations that must live in them.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    