skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fish and aquatic salamander responses to the creation of riparian canopy gaps along forested headwater streams
Many headwaters across temperate North America have uniform mid‐succession riparian forests recovering from historic land clearing. These young riparian stands contrast with late‐succession forests, which have complex structural characteristics including canopy gaps. Canopy gaps provide structural diversity that can be important for terrestrial species, and they are also hypothesized to be important features for aquatic environments. The light patches below gaps create productivity hotspots in streams and therefore create potential for increased stream apex predator abundances through bottom‐up food web drivers. However, increasing light may also affect stream temperature, a consideration for coldwater fish (salmonids). We established an experimental before‐after control‐impact study to explicitly assess how creating canopy gaps in the riparian forest affects the abundance and biomass of coastal cutthroat trout (Oncorhynchus clarkii clarkii) and Pacific giant salamanders (Dicamptodon tenebrosus) in paired reference and treatment reaches at five replicate streams. Gaps were designed to resemble those in old‐growth forests in the treatment reach of each system although wood was explicitly left out of the stream. At four of five sites, we found small and generally consistent positive responses in adult cutthroat trout and total vertebrate biomass to localized increases in light but only 2 years after treatment. Results suggest that opening riparian canopies adjacent to streams via gaps is a viable tool to enhance structural complexity of riparian forests without negatively impacting stream vertebrates; however, a single gap alone had small effects on aquatic vertebrates. More or larger gaps would likely be needed to notably enhance aquatic apex predators.  more » « less
Award ID(s):
2025755
PAR ID:
10468880
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
32
Issue:
1
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Changing climate conditions are expected to cause increases in the frequency and severity of drought conditions in many areas around the world, including the Pacific Northwest region of North America. While drought impacts manifest across the landscape, headwater streams are particularly susceptible to droughts due to limited deep‐water habitats and low water volumes that allow for substantial increases in water temperature. While low volumes of water and increased stream temperature will likely affect all aquatic species to some degree, the response of different taxa to these impacts is expected to vary with differences in physiological needs and habitat preferences among species. Using a before–after control‐impact (BACI) experimental design, this study investigates how reduced streamflow and increased stream temperature affect the two dominant apex predators in headwater streams of the Pacific Northwest, coastal cutthroat trout (Oncorhynchus clarkii clarkii) and coastal giant salamander (Dicamptodon tenebrosus). In a second‐order stream in the H.J. Andrews Experimental Forest in OR, USA, experimental flow diversions created decoupled drought conditions of reduced streamflow and elevated temperatures. Low‐flow conditions were created by diverting water around a 100‐m stream reach and this diverted water was passively warmed before re‐entering a downstream channel to create an increased temperature reach. We compared fish and salamander abundances and stream habitat in an upstream unmanipulated reference reach to the two experimental reaches. Relative increases in temperature ranged between 0.41 and 0.63°C, reflecting realistic stream warming in this region during drought events. Trout responded positively to increased temperatures, showing an increase in abundance, biomass, condition factor, and growth, whereas salamanders responded negatively in all metrics except condition. The low‐flow reach diverted approximately 50% of the flow, resulting in a relative pool area reduction of about 20%. Relative to the reference reach, salamanders displayed a net positive abundance response while trout declined in the low‐flow reach. The contrasting responses of these populations to decoupled drought conditions suggest that interactions of flow and temperature changes together will influence drought responses of the vertebrate communities of headwater streams. 
    more » « less
  2. Abstract Determining how streams develop naturally, particularly the ecological role of newly developed riparian canopy cover, is essential to understanding the factors that structure new stream communities and provides valuable information for restoring highly disturbed ecosystems. However, attempts to understand primary succession in riverine ecosystems have been hindered by a lack of data owing to the infrequent formation of new rivers on the landscape. In the present study, we used five streams formed following the 1980 eruption of Mount St. Helens (WA, USA) to examine the influence of canopy cover development on algal and benthic macroinvertebrate assemblages, biomass, and organic matter processing. Newly established closed canopy reaches had less available light, but no significant differences in algal biomass or macroinvertebrate assemblages compared to open canopy reaches. Instead, algal and macroinvertebrate communities were structured mainly by hydrologic differences among watersheds. In contrast, organic matter processing rates were sensitive to canopy cover development, and rates were faster under closed canopies, especially in late summer or after terrestrial preconditioning. After 40 years of stream and riparian primary successional development, canopy cover strongly influences ecosystem function, but aquatic organism assembly was more influenced by physio-chemical and hydrologic variation. Our findings provide insight into the development of in-stream assemblages and ecosystem functions, which is also relevant to efforts to address major disturbances to stream channels, such as volcanic eruptions, floods, forest fires, and clear-cut logging. 
    more » « less
  3. Abstract The body size of aquatic vertebrates is declining across populations and ecosystems worldwide owing to warmer water temperature and changing streamflow. In freshwaters, the effects of stream network position and density‐dependent factors on body size are less understood. We used an extensive dataset spanning 41 stream sites over 7 years to evaluate how density‐dependent and density‐independent factors influence the size of two top predators in small watersheds, Coastal Cutthroat TroutOncorhynchus clarkii clarkiiand Coastal Giant SalamandersDicamptodon tenebrosus. We tested three hypotheses of body‐size variation for trout and salamanders, including intraspecific density dependence, interspecific density dependence, and resource availability, using empirical observations in hierarchical linear mixed models in a model‐selection framework. In our best‐supported models, the strongest predictors of size were conspecific negative density dependence, as expected, suggesting greater intraspecific interactions probably owing to conspecific individuals having similar requirements. We reveal a biogeographic pattern in which body size peaks in middle stream‐network positions and plateaus or declines at lower and upper locations, proposing that stream network position also plays a role in determining body size in small watersheds. Salamander density also has a quadratic effect on adult trout size, with salamanders having a greater overall effect on the body size of both species than trout, suggesting that salamanders might be more dominant than trout in some interactions. Collectively, we found that biotic interactions, mainly conspecific but also interspecific, and stream‐network position affect trout and salamander body sizes in small watersheds. 
    more » « less
  4. Abstract Generalizable methods that identify suitable aquatic habitat across large river basins and regions are needed to inform resource management. Habitat suitability models intersect environmental variables to predict species occurrence, but are often data intensive and thus are typically developed at small spatial scales. This study estimated mean monthly aquatic habitat suitability throughout Utah (USA) for Bonneville Cutthroat Trout (Oncorhynchus clarkii utah) and Bluehead Sucker (Catostomus discobolus) with publicly available, geospatial datasets. We evaluated 15 habitat suitability models using unique combinations of percent of mean annual discharge, velocity, gradient, and stream temperature. Environmental variables were validated with observed conditions and species presence observations to verify habitat suitability estimates. Stream temperature, gradient, and discharge best predicted Bonneville Cutthroat Trout presence, and gradient and discharge best predicted Bluehead Sucker presence. Simple aquatic habitat suitability models outperformed models that used only streamflow to estimate habitat for both species, and are useful for conservation planning and water resources decision‐making. This modeling approach could enable resource managers to prioritize stream restoration across vast regions within their management domain, and is potentially compatible with water management modeling to improve ecological objectives in management models. 
    more » « less
  5. Understanding the mechanisms that enable species coexistence is essential for explaining community structure and biodiversity. We tested the hypothesis that dietary niche partitioning facilitates coexistence between two dominant stream predators in western North America: Coastal Giant Salamanders (Dicamptodon tenebrosus) and Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii). These aquatic predators are important regulators of community dynamics and ecosystem processes in stream networks. We analyzed stomach contents from 81 salamanders and 96 trout collected via electrofishing in a 6-km section of Lookout Creek, Oregon, during low flow conditions in summer. We predicted that salamanders, primarily nocturnal benthic feeders, and trout, visual consumers of both terrestrial and aquatic prey, would exhibit distinct diets reducing direct diet overlap. We identified 4,897 prey items, classifying them into aquatic (50) and terrestrial (77) sources across 127 categories. Salamanders primarily preyed on aquatic invertebrates (Trichoptera, Ephemeroptera, and Plecoptera), while trout consumed a mix of terrestrial and aquatic invertebrates (Diptera, Trichoptera, and Plecoptera). Partial dietary overlap confirmed niche differentiation as a likely mechanism facilitating the coexistence of trout and salamanders. These findings highlight the role of dietary partitioning in structuring predator communities and inform predictions of how environmental changes may impact stream ecosystems. 
    more » « less