Abstract Fire exclusion and mismanaged grazing are globally important drivers of environmental change in mesic C4grasslands and savannas. Although interest is growing in prescribed fire for grassland restoration, we have little long‐term experimental evidence of the influence of burn season on the recovery of herbaceous plant communities, encroachment by trees and shrubs, and invasion by exotic grasses. We conducted a prescribed fire experiment (seven burns between 2001 and 2019) in historically fire‐excluded and overgrazed grasslands of central Texas. Sites were assigned to one of four experimental treatments: summer burns (warm season, lightning season), fall burns (early cool season), winter burns (late cool season), or unburned (fire exclusion). To assess restoration outcomes of the experiment, in 2019, we identified old‐growth grasslands to serve as reference sites. Herbaceous‐layer plant communities in all experimental sites were compositionally and functionally distinct from old‐growth grasslands, with little recovery of perennial C4grasses and long‐lived forbs. Unburned sites were characterized by several species of tree, shrub, and vine; summer sites were characterized by certain C3grasses and forbs; and fall and winter sites were intermediate in composition to the unburned and summer sites. Despite compositional differences, all treatments had comparable plot‐level plant species richness (range 89–95 species/1000 m2). At the local‐scale, summer sites (23 species/m2) and old‐growth grasslands (20 species/m2) supported greater richness than unburned sites (15 species/m2), but did not differ significantly from fall or winter sites. Among fire treatments, summer and winter burns most consistently produced the vegetation structure of old‐growth grasslands (e.g., mean woody canopy cover of 9%). But whereas winter burns promoted the invasive grassBothriochloa ischaemumby maintaining areas with low canopy cover, summer burns simultaneously limited woody encroachment and controlledB. ischaemuminvasion. Our results support a growing body of literature that shows that prescribed fire alone, without the introduction of plant propagules, cannot necessarily restore old‐growth grassland community composition. Nonetheless, this long‐term experiment demonstrates that prescribed burns implemented in the summer can benefit restoration by preventing woody encroachment while also controlling an invasive grass. We suggest that fire season deserves greater attention in grassland restoration planning and ecological research.
more »
« less
Dispersal and persistence traits inform long-term herbaceous plant community change in encroached savannas
Savanna plant communities are highly diverse, characterized by an open-canopy structure with rich herbaceous diversity, and maintained by frequent low-intensity fire and grazing. Due to habitat loss and fragmentation, savannas are globally threatened, with less than 1% of former oak savanna land cover found in the Midwestern United States remaining. In remnant oak savannas, loss of fire and grazing has led to woody encroachment and canopy closure over the past century with cascading consequences for the taxonomic composition. Whether these taxonomic changes can be broadly predicted using species functional traits (morpho-physio-phenological characteristics that impact the fitness of a species) is a key question. We ask whether the impacts of woody encroachment on herbaceous species can be predicted from species’ abilities to persist (avoid extinction) and disperse (colonize new areas). Specifically, we pair persistence traits (e.g., clonality, belowground storage) and dispersal traits (e.g., seed mass, dispersal mode, flowering height) with a rare 60-year dataset from oak savannas in Wisconsin, USA to understand how the representation of these traits has changed in the herbaceous community over time. Over 60 years, change in species composition was explained both by dispersal abilities and persistence traits; small-seeded species reliant on unassisted dispersal and moderately clonal species experienced the greatest losses. These changes in functional composition are likely due to increased woody encroachment, which may impede propagule production and movement. Restoration efforts need to prioritize species that are dispersal limited and those that create fine fuels, which aid the persistence of fire-maintained open habitat savannas.
more »
« less
- Award ID(s):
- 1754764
- PAR ID:
- 10468930
- Publisher / Repository:
- Plant Ecology
- Date Published:
- Journal Name:
- Plant Ecology
- Volume:
- 224
- Issue:
- 4
- ISSN:
- 1385-0237
- Page Range / eLocation ID:
- 361 to 371
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Grasslands are among the most imperilled ecosystems worldwide, and many have experienced degradation due to the loss of historical disturbance regimes and subsequent woody encroachment. Management practitioners often use physical and chemical management interventions in combination with fire to counter encroachment, altering aboveground structure and belowground function, respectively. This may disrupt the feedbacks that perpetuate encroachment and restore the herbaceous community.We use a large‐scale field experiment to assess the initial effects of different management interventions on woody vegetation persistence, abiotic habitat conditions, and herbaceous community composition. We evaluate these effects across seven sites spanning a natural soil moisture gradient to capture one aspect of environmental heterogeneity with which managers regularly contend.We found that chemical intervention, both with and without the addition of physical intervention, was most effective at reducing woody plant cover and abundance, and a second application reduced woody plant abundance by more than one application alone. We also found that any management intervention increased light availability and air temperature and decreased soil moisture, with the combination of physical and chemical interventions having the greatest effects. Finally, none of the management interventions affected herbaceous richness and functional group cover within the study period, indicating delayed or nonexistent effects on herbaceous community composition.Synthesis and application. Our findings suggest that management should focus on chemical intervention for the greatest effects on woody plant persistence and abiotic habitat conditions. Changes to herbaceous community composition may occur in the long term and seem likely since short‐term effects of management were successful in altering processes related to encroachment feedbacks.more » « less
-
White-tailed deer (Odocoileus virginianus) hunting is an important economic activity associated with the management of forests and rangelands in the USA, with over $12.9 billion dollars of related annual expenditures. Reducing tree cover through thinning and prescribed fire both have the potential to increase the quantity and quality of deer forage. We evaluated the long-term impacts of eight different combinations of fire return intervals and tree harvest on forage productivity and protein content of the forage. Based on management regime, study units ranged from savanna to closed-canopy forest. Aboveground net primary production (ANPP) of six functional groups (grass, panicum, forb, legume, woody, sedge) of understory vegetation was measured in October 2019 and 2020 using destructive sampling. Samples for foliar crude protein (CP) concentration were collected in spring, summer, and fall of 2020. Total understory ANPP ranged from 2.9 to 466.3 g m− 2 and was up to 566% greater in savanna systems maintained by frequent fire (return interval of three years or less) than in non-burned forest treatments. Annual burning resulted in ANPP dominated by herbaceous plants composed mostly of firetolerant grasses (e.g., Andropogon gerardii, Schizachyrium scoparium). Longer fire return intervals or no fire resulted in roughly equal ANPP from understory woody and herbaceous species. Crude protein concentrations were up to 45.7% greater in the woodland and forest units than in the savanna units for seven of the eleven species sampled. The greater CP in the forests was most noticeable in the summer when deer needs for quality forage are substantial. Increased protein concentrations of understory species in the forests, but greater ANPP in the savannas indicate that managing for a mix of savanna and woodland could be ideal for balancing forage quantity with increased forage protein.more » « less
-
Abstract Consumers, including megaherbivores and fire, are considered important limiting forces for woody plants and canopy closure in African savannas. However, climatic events like drought can also play a significant role in limiting trees and maintaining tree‐grass coexistence in savannas. The extent to which top‐down control (e.g. megaherbivores) and bottom‐up resource limitation through drought and competition interact to influence savanna tree mortality and woody structure is unclear. Here, we compared the change in the number of large trees before and after a severe drought in a savanna with elephants ( Loxodonta africana ) and one without elephants. Elephants and drought both limited the number of large trees at our sites, but contrary to our predictions, there was no interactive effect of these drivers on overall changes in tree densities. However, there was a synergistic effect on the dominant tree species, Senegalia nigrescens , such that tree loss post‐drought was greater where elephants were present compared to where they were absent. Hence, our results suggest that species‐specific differences in drought resistance, as well as density‐dependent factors, likely impact the severity of drought effects on savanna tree communities. In savannas, drought has the potential to exert strong control on tree survival and prevent canopy closure, thus partially filling the role of megaherbivores in limiting large trees when these consumers are absent. As drought severity and frequency are predicted to increase in the future, the influence of drought on savanna vegetation structure becomes increasingly important to consider.more » « less
-
Abstract Although savanna woody encroachment has become a global phenomenon, relatively little is known about its effects on multiple dimensions and levels of savanna biodiversity.Using a combination of field surveys, a species‐level phylogeny, and functional metrics drawn from a morphological dataset, we evaluated how the progressive increase in tree cover in a fire‐suppressed savanna landscape affects the taxonomic, functional, and phylogenetic diversity of neotropical ant communities, at both the alpha and beta levels. Ants were sampled along an extensive tree cover gradient, ranging from open savannas to forests established in former savanna areas.Variation in tree cover had a significant influence on all facets of diversity at the beta level, whereas at the alpha level tree cover variation affected the taxonomic and functional but not the phylogenetic diversity of the ant communities.In general, ant community responses to variation in tree cover were largely non‐linear as differences in taxonomic alpha diversity and in the taxonomic, functional, and phylogenetic composition of the sampled communities were often much stronger at the savanna/forest transition than at any other part of the gradient. This indicates that savanna ant communities switch rapidly to an alternative state once the savanna turns into forest.Ant communities in the newly formed forest areas lacked many of the species typical of the savanna habitats, suggesting that the maintenance of a fire suppression policy is likely to result in a decrease in ant diversity and in the homogenisation of the ant fauna at the landscape scale.more » « less
An official website of the United States government

