Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Grasslands are among the most imperilled ecosystems worldwide, and many have experienced degradation due to the loss of historical disturbance regimes and subsequent woody encroachment. Management practitioners often use physical and chemical management interventions in combination with fire to counter encroachment, altering aboveground structure and belowground function, respectively. This may disrupt the feedbacks that perpetuate encroachment and restore the herbaceous community.We use a large‐scale field experiment to assess the initial effects of different management interventions on woody vegetation persistence, abiotic habitat conditions, and herbaceous community composition. We evaluate these effects across seven sites spanning a natural soil moisture gradient to capture one aspect of environmental heterogeneity with which managers regularly contend.We found that chemical intervention, both with and without the addition of physical intervention, was most effective at reducing woody plant cover and abundance, and a second application reduced woody plant abundance by more than one application alone. We also found that any management intervention increased light availability and air temperature and decreased soil moisture, with the combination of physical and chemical interventions having the greatest effects. Finally, none of the management interventions affected herbaceous richness and functional group cover within the study period, indicating delayed or nonexistent effects on herbaceous community composition.Synthesis and application. Our findings suggest that management should focus on chemical intervention for the greatest effects on woody plant persistence and abiotic habitat conditions. Changes to herbaceous community composition may occur in the long term and seem likely since short‐term effects of management were successful in altering processes related to encroachment feedbacks.more » « less
- 
            Abstract Restoring ecosystems in a changing climate requires understanding how management interventions interact with climate conditions. In tallgrass prairies, disturbance through fire, mowing, or grazing is a critical force in maintaining herbaceous plant diversity. However, unlike historical fire regimes that occurred throughout the growing season, management actions like prescribed fire and mowing are commonly limited to the spring or fall seasons. Warming winters are resulting in less snow, causing overwintering plants to experience reduced insulation from snow and these more extreme winter conditions may be exacerbated or ameliorated depending on the timing of management actions. Understanding this novel interaction between the timing of management actions and snow depth is critical for managing and restoring grassland ecosystems. Here, we applied experimental management treatments (spring and fall burn and fall mow) in combination with snow depth manipulations to test whether the type and timing of commonly implemented disturbances interact with snow depth to affect restored prairie plant diversity and composition. Overall, snow manipulations and management actions influenced soil temperature while only management actions influenced spring thaw timing. Burning in the fall, which removes litter prior to winter resulted in colder soils and earlier spring thaw timing. However, plant communities were mostly resistant to these effects. Instead, plants responded to management actions such that burning and mowing, regardless of timing, increased plant diversity and spring burning increased flowering structure cover while reducing weedy cool season grass cover. Together these results suggest that grassland plant communities are resistant to winter climate change over the short term and that burning or mowing is critical to promoting plant diversity in tallgrass prairies.more » « less
- 
            Savanna plant communities are highly diverse, characterized by an open-canopy structure with rich herbaceous diversity, and maintained by frequent low-intensity fire and grazing. Due to habitat loss and fragmentation, savannas are globally threatened, with less than 1% of former oak savanna land cover found in the Midwestern United States remaining. In remnant oak savannas, loss of fire and grazing has led to woody encroachment and canopy closure over the past century with cascading consequences for the taxonomic composition. Whether these taxonomic changes can be broadly predicted using species functional traits (morpho-physio-phenological characteristics that impact the fitness of a species) is a key question. We ask whether the impacts of woody encroachment on herbaceous species can be predicted from species’ abilities to persist (avoid extinction) and disperse (colonize new areas). Specifically, we pair persistence traits (e.g., clonality, belowground storage) and dispersal traits (e.g., seed mass, dispersal mode, flowering height) with a rare 60-year dataset from oak savannas in Wisconsin, USA to understand how the representation of these traits has changed in the herbaceous community over time. Over 60 years, change in species composition was explained both by dispersal abilities and persistence traits; small-seeded species reliant on unassisted dispersal and moderately clonal species experienced the greatest losses. These changes in functional composition are likely due to increased woody encroachment, which may impede propagule production and movement. Restoration efforts need to prioritize species that are dispersal limited and those that create fine fuels, which aid the persistence of fire-maintained open habitat savannas.more » « less
- 
            Understanding patterns of seed predation in tallgrass prairie restorations is vital because seed additions are often used by managers to increase diversity and promote native species. However, the success of seed additions depends on the extent of seed predation. It is not clear how seed predation varies through time and to what extent it is affected by various commonly used management techniques in grasslands (e.g. spring or fall prescribed burns, mowing). We examined how predation ofSorghastrum nutansseeds changed during eight trials between June 2018 and April 2019 in plots that received one of four different plant litter removal treatments (fall mow, fall burn, spring burn, and unaltered control). Granivory varied throughout the year, reaching its peak in the late fall and early winter. However, we found that seed predators consumed significantly fewer seeds when litter was removed following fall burn and fall mow treatment applications. These treatments occurred during times when granivory was otherwise high in areas where litter remained intact (control and spring burn plots). Our findings highlight the importance of management decisions and how they interact with granivory in grassland restorations. Both time of year and litter cover determine seed predation rates; seed predators consume more seeds when seeds are abundant but rely on intact litter cover while foraging. This suggests that if seeds are added during the fall, litter should be removed to minimize the loss of seeds to granivory. Alternatively, seed additions during the spring are likely to experience lower rates of seed predation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
