skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soft, flexible pressure sensors for pressure monitoring under large hydrostatic pressure and harsh ocean environments
A soft, flexible pressure sensor is developed to measure hydrostatic pressure in the ocean environment, which can be potentially integrated with many platforms including diver equipment and marine animal tags for real-time pressure monitoring.  more » « less
Award ID(s):
1762324
PAR ID:
10468953
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Soft Matter
Volume:
19
Issue:
30
ISSN:
1744-683X
Page Range / eLocation ID:
5772 to 5780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grzybowski, Andrzej (Ed.)
    This study investigated the agreement of intraocular pressure measurements using rebound tonometry and applanation tonometry in response to atmospheric changes in a hyperbaric chamber. Twelve eyes of 12 healthy subjects were included in this prospective, comparative, single-masked study. Intraocular pressure measurements were performed by rebound tonometry followed by applanation tonometry in a multiplace hyperbaric chamber at 1 Bar, followed by 2, 3 and 4 Bar during compression and again at 3 and 2 Bar during decompression. Mean differences between rebound and applanation intraocular pressure measurements were 1.6, 1.7, and 2.1 mmHg at 2, 3, and 4 Bar respectively during compression and 2.6 and 2.2 mmHg at 3 and 2 Bar during decompression. Lower limits of agreement ranged from -3.7 to -5.9 mmHg and upper limits ranged from -0.3 to 1.9 mmHg. Multivariate analysis showed that the differences between rebound and applanation intraocular pressure measurements were independent of atmospheric pressure changes (p = 0.79). Intraocular pressure measured by rebound tonometry shows a systematic difference compared to intraocular measured by applanation tonometry, but this difference is not influenced by changes of atmospheric pressure up to 4 Bar in a hyperbaric chamber. Agreement in magnitude of change between devices suggests rebound tonometry is viable for assessing intraocular pressure during atmospheric changes. Future studies should be designed in consideration of expected differences in IOP values provided by the two devices. 
    more » « less
  2. Abstract Recent advancements in 3D printing technology have expanded its application to manufacturing pressure sensors. By harnessing the cost‐effectiveness, streamlined processes, and design flexibility of 3D printing, sensor fabrication can be customized to meet specific performance needs. Thus far, 3D printing in pressure sensor development has been primarily limited to creating molds for transferring patterns onto flexible substrates, restricting both material selection and sensor performance. To fully unlock the potential of 3D printing in advanced pressure sensor fabrication, it is crucial to establish effective design rules focused on enhancing the figure of merit performance. This study introduces a universal design strategy aimed at maintaining high sensitivity across a wide pressure range—a challenging feat, as sensitivity significantly decreases at higher pressures. Our approach centers on engineering the deformability of 3D‐printed structures, achieving a linear increase in contact area between sensor patterns and electrodes without reaching saturation. Sensors designed with high elongation and low stiffness exhibit consistent sensitivity of 162.5 kPa⁻¹ across a broad pressure range (0.05–300 kPa). Mechanistic investigations through finite element analysis confirm that engineered deformability is key to achieving this enhanced linear response, offering robust sensing capabilities for demanding applications such as deep‐sea and space exploration. 
    more » « less
  3. A pneumatic soft robot can be made autonomous by carrying a liquid chemical fuel. In the existing design, to transmit the fuel, the pressure of the fuel tank must exceed that of the actuator. Consequently, the fuel tank must be sufficiently stiff, which hardens the robot. Herein, inspired by pit membranes in trees, a chemical pump is developed, which is consisting of a nanoporous membrane between the fuel tank and the actuator, and coated with a catalyst on the side of the actuator. The fuel in the fuel tank migrates across the membrane and, on meeting the catalyst, decomposes into a pressurized gas and inflates the actuator. The chemical pump is driven by the free energy of reaction, against the difference in pressure. The pores in the membrane are large enough for the fuel molecules to migrate through, but small enough to block the pressurized gas to tunnel back. In a demonstration, the fuel tank has ambient pressure, and the actuator has a pressure of 350 kPa, comparable to the pressure in a car tire. The chemical pump enables pneumatic robots to be autonomous, powerful, and soft. 
    more » « less
  4. This study systematically investigates the magnetic properties of the layered ferromagnet MnPt5As under pressure through a combination of experimental measurements and theoretical simulations. MnPt5As exhibits a ferromagnetic transition at approximately 301 K. Neutron diffraction measurements under applied pressures up to ∼4.9 GPa were performed over a temperature range from 320 to 100 K to probe its magnetic behavior. The results confirm that the Mn atoms maintain a ferromagnetic order under applied pressures, consistent with the ambient-pressure findings. However, magnetic anisotropy is notably suppressed. To further elucidate the compressibility of magnetic anisotropy in MnPt5As, x-ray diffraction under pressure was conducted. The results reveal that the c-axis undergoes a greater and more rapid compression compared to the ab-plane, which may contribute to the observed suppression of Mn ferromagnetic ordering along the c-axis. Additionally, theoretical calculations indicate that magnetic ordering exhibits a similar pressure-induced trend under applied pressure, supporting the experimental observations. These findings offer insights into the pressure-dependent magnetic properties and anisotropy of MnPt5As, with potential implications for strain engineering in Mn-based magnetic devices. 
    more » « less
  5. We present the combined results of single crystal X-ray diffraction, physical properties characterization, and theoretical assessment of EuSnP under high pressure. Single crystals of EuSnP prepared using Sn self-flux crystallize in the tetragonal NbCrN-type crystal structure (S.G. P 4/ nmm ) at ambient pressure. Previous studies have shown that for Eu ions, seven unpaired electrons impart a 2+ oxidation state. Assuming the oxidation states of Eu to be +2 and P to be −3, each Sn will donate one electron, with one p valence electron left for forming a weak Sn–Sn bond. According to the high-pressure single crystal X-ray diffraction measurements, no structural phase transition was observed up to ∼6.2 GPa. Temperature-dependent resistivity measurements up to 2.15 GPa on single crystals indicate that the phase-transition temperature occurring at the Néel temperature ( T N ) is significantly enhanced under high pressure. The robust crystallography and enhanced antiferromagnetic transition temperatures can be rationalized by the electronic structure calculations and chemical bonding analysis. The increasing Eu–P bonding interaction is consistent with the lattice parameter changing and enhanced T N . Moreover, the molecular orbital diagram shows that the weak Sn–Sn bond can be squeezed under pressure, acting as a compression buffer to stabilize the structure. 
    more » « less