Almost half of the preventable deaths in emergency care can be associated with a medical delay. Understanding how clinicians experience delays can lead to improved alert designs to increase delay awareness and mitigation. In this paper, we present the findings from an iterative user-centered design process involving 48 clinicians to develop a prototype alert system for supporting delay awareness in complex medical teamwork such as trauma resuscitation. We used semi-structured interviews and card-sorting workshops to identify the most common delays and elicit design requirements for the prototype alert system. We then conducted a survey to refine the alert designs, followed by near-live, video-guided simulations to investigate clinicians' reactions to the alerts. We contribute to CSCW by designing a prototype alert system to support delay awareness in time-critical, complex teamwork and identifying four mechanisms through which teams mitigate delays.
more » « less- Award ID(s):
- 1763509
- PAR ID:
- 10468965
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 7
- Issue:
- CSCW2
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We describe an experiment conducted with three domain experts to understand how well they can recognize types and performance stages of activities using speech data transcribed from verbal communications during dynamic medical teamwork. The insights gained from this experiment will inform the design of an automatic activity recognition system to alert medical teams to process deviations in real time. We contribute to the literature by (1) characterizing how domain experts perceive the dynamics of activity-related speech, and (2) identifying the challenges associated with system design for speech-based activity recognition in complex team-based work settings.more » « less
-
We describe an analysis of speech during time-critical, team-based medical work and its potential to indicate process delays. We analyzed speech intention and sentence types during 39 trauma resuscitations with delays in one of three major lifesaving interventions: intravenous/intraosseous (IV/IO) line insertion, cardiopulmonary and resuscitation (CPR), and intubation. We found a significant difference in patterns of speech during delays vs. speech during non-delayed work. The speech intention during CPR delays, however, differed from the other LSIs, suggesting that context of speech must be considered. These findings will inform the design of a clinical decision support system (CDSS) that will use multiple sensor modalities to alert medical teams to delays in real time. We conclude with design implications and challenges associated with speech-based activity recognition in complex medical processes.more » « less
-
We describe an analysis of speech during time-critical, team-based medical work and its potential to indicate process delays. We analyzed speech intention and sentence types during 39 trauma resuscitations with delays in one of three major lifesaving interventions: intravenous/intraosseous (IV/IO) line insertion, cardiopulmonary and resuscitation (CPR), and intubation. We found a significant difference in patterns of speech during delays vs. speech during non-delayed work. The speech intention during CPR delays, however, differed from the other LSIs, suggesting that context of speech must be considered. These findings will inform the design of a clinical decision support system (CDSS) that will use multiple sensor modalities to alert medical teams to delays in real time. We conclude with design implications and challenges associated with speech-based activity recognition in complex medical processes.more » « less
-
We describe an initial analysis of speech during team-based medical scenarios and its potential to indicate process delays in an emergency medical setting. We analyzed the speech of trauma resuscitation teams in cases with delayed intravenous/intraosseous (IV/IO) line placement, a significant contributor to delays during life-saving interventions. The insights gained from this analysis will inform the design of a clinical decision support system (CDSS) that will use multiple sensor modalities to alert medical teams to errors in real time. We contribute to the literature by determining how the intention of each speech line and the sentence can support real-time, automatic detection of delays during time-critical team activities.more » « less
-
Decision support alerts have the potential to assist clinicians in determining appropriate interventions for critically injured patients. The design of these alerts is critical because it can impact their adoption and effectiveness. In this late-breaking work, we explore how decision support alerts should be designed for cognitive aids used in time- and safety-critical medical events. We conducted interviews with 11 trauma team leaders to elicit their thoughts and reactions to potential alert designs. From the findings, we contribute three implications for designing alerts for cognitive aids that support team-based, time-critical decision making and discuss how these implications can be further explored in future work.more » « less