Understanding the key mechanisms that control northern treelines is important to accurately predict biome shifts and terrestrial feedbacks to climate. At a global scale, it has long been observed that elevational and latitudinal treelines occur at similar mean growing season air temperature (GSAT) isotherms, inspiring the growth limitation hypothesis (GLH) that cold GSAT limits aboveground growth of treeline trees, with mean treeline GSAT ~6-7 degrees celsius (°C). Treelines with mean GSAT warmer than 6-7 °C may indicate other limiting factors. Many treelines globally are not advancing despite warming, and other climate variables are rarely considered at broad scales. Our goals were to test whether current boreal treelines in northern Alaska correspond with the GLH isotherm, determine which environmental factors are most predictive of treeline presence, and to identify areas beyond the current treeline where advance is most likely. We digitized ~12,400 kilometers (km) of treelines (greater than 26K points) and computed seasonal climate variables across northern Alaska. We then built a generalized additive model predicting treeline presence to identify key factors determining treeline. Two metrics of mean GSAT at Alaska’s northern treelines were consistently warmer than the 6-7 °C isotherm (means of 8.5 °C and 9.3 °C), indicating that direct physiological limitation from low GSAT is unlikely to explain the position of treelines in northern Alaska. Our final model included cumulative growing degree-days, near-surface (≤ 1 meters (m)) permafrost probability, and growing season total precipitation, which together may represent the importance of soil temperature. Our results indicate that mean GSAT may not be the primary driver of treeline in northern Alaska or that its effect is mediated by other more proximate, and possibly non-climatic, controls. Our model predicts treeline potential in several areas beyond current treelines, pointing to possible routes of treeline advance if unconstrained by non-climatic factors. 
                        more » 
                        « less   
                    
                            
                            The climate envelope of Alaska’s northern treelines: implications for controlling factors and future treeline advance. Mapping seasonal climate variables 2019 - 2021.
                        
                    
    
            Understanding the key mechanisms that control northern treelines is important to accurately predict biome shifts and terrestrial feedbacks to climate. At a global scale, it has long been observed that elevational and latitudinal treelines occur at similar mean growing season air temperature (GSAT) isotherms, inspiring the growth limitation hypothesis (GLH) that cold GSAT limits aboveground growth of treeline trees, with mean treeline GSAT ~6-7 degrees celsius (°C). Treelines with mean GSAT warmer than 6-7 °C may indicate other limiting factors. Many treelines globally are not advancing despite warming, and other climate variables are rarely considered at broad scales. Our goals were to test whether current boreal treelines in northern Alaska correspond with the GLH isotherm, determine which environmental factors are most predictive of treeline presence, and to identify areas beyond the current treeline where advance is most likely. We digitized ~12,400 kilometers (km) of treelines (greater than 26K (26,000) points) and computed seasonal climate variables across northern Alaska. We then built a generalized additive model predicting treeline presence to identify key factors determining treeline. Two metrics of mean GSAT at Alaska’s northern treelines were consistently warmer than the 6-7 °C isotherm (means of 8.5 °C and 9.3 °C), indicating that direct physiological limitation from low GSAT is unlikely to explain the position of treelines in northern Alaska. Our final model included cumulative growing degree-days, near-surface (≤ 1 meters (m)) permafrost probability, and growing season total precipitation, which together may represent the importance of soil temperature. Our results indicate that mean GSAT may not be the primary driver of treeline in northern Alaska or that its effect is mediated by other more proximate, and possibly non-climatic, controls. Our model predicts treeline potential in several areas beyond current treelines, pointing to possible routes of treeline advance if unconstrained by non-climatic factors. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1748849
- PAR ID:
- 10468981
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- tundra-taiga ecotone Growth limitation hypothesis boreal forest permafrost
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract AimAlpine treeline ecotones are influenced by environmental drivers and are anticipated to shift their locations in response to changing climate. Our goal was to determine the extent of recent climate‐induced treeline advance in the northeastern United States, and we hypothesized that treelines have advanced upslope in complex ways depending on treeline structure and environmental conditions. LocationWhite Mountain National Forest (New Hampshire) and Baxter State Park (Maine), USA. TaxonHigh‐elevation tree species—Abies balsamea, Picea marianaandBetula cordata. MethodsWe compared current and historical high‐resolution aerial imagery to quantify the advance of treelines over the last four decades, and link treeline changes to treeline form (demography) and environmental drivers. Spatial analyses of the aerial images were coupled with ground surveys of forest vegetation and topographical features to ground‐truth treeline classification and provide information on treeline demography and additional potential drivers of treeline locations. We used multiple linear regression models to examine the importance of both topographic and climatic variables on treeline advance. ResultsRegional treelines have significantly shifted upslope over the past several decades (on average by 3 m/decade). Gradual diffuse treelines (characterized by declining tree density) showed significantly greater upslope shifts (5 m/decade) compared to other treeline forms, suggesting that both climate warming and treeline demography are important correlates of treeline shifts. Topographical features (slope, aspect) as well as climate (accumulated growing degree days, AGDD) explained significant variation in the magnitude of treeline advance (R2 = 0.32). Main ConclusionsThe observed advance of treelines is consistent with the hypothesis that climate warming induces upslope treeline shifts. Overall, our findings suggest that gradual diffuse treelines at high elevations may be indicative of climate warming more than other alpine treeline ecotones and thus they can inform us about past and ongoing climatic changes.more » « less
- 
            Abstract Ecosystem engineering by beavers is a nascent disturbance in the Arctic tundra, appearing in the 1970s in western Alaska and since expanding deeper into tundra regions. Evidence from modeling and observations indicates that beaver ponds act as biophysical oases, and we anticipate myriad changes as these disturbances are constructed along tundra streams, sloughs, and lake outlets. We used over 11 000 mapped beaver pond locations in Arctic Alaska and their climatic, geographic, and environmental attributes to understand (1) which of those attributes control the distribution of beaver ponds, and, if temperature is a factor, (2) how beaver pond distribution will change under future climate scenarios. Of the variables used in the ensemble modeling approach, mean annual temperature was the most important variable in determining beaver pond locations, with pond occurrences more likely in warmer locales (>−2 °C). The distance to water was also important in determining beaver pond locations, as expected, with higher likelihood of ponds closer to water features. Lowland topographic variables were also relevant in determining the distribution of beaver ponds. Under the current climate, beaver ponds are widespread in most of western Alaska, matching the predicted extent of potential occupancy, with the exception of areas furthest from treeline, implying possible dispersal lags or other factors. By 2050, under future climate scenarios (RCP8.5; 2090 for RCP6.0), the entire North Slope of Alaska, which currently has no beaver ponds, is predicted to be suitable for beaver ponds, comparable to western Alaska in 2016. The vast extent of future beaver engineering in tundra regions will require reenvisioning the typical tundra stream ecosystems of northern Alaska, northern Canada, northern Europe, and northern Asia to include more extensive wetlands, routine disturbances, permafrost thaw, and other features of these nascent oases that are not fully understood.more » « less
- 
            Abstract Mountain treelines are thought to be sensitive to climate change. However, how climate impacts mountain treelines is not yet fully understood as treelines may also be affected by other human activities. Here, we focus on “closed‐loop” mountain treelines (CLMT) that completely encircle a mountain and are less likely to have been influenced by human land‐use change. We detect a total length of ~916,425 km of CLMT across 243 mountain ranges globally and reveal a bimodal latitudinal distribution of treeline elevations with higher treeline elevations occurring at greater distances from the coast. Spatially, we find that temperature is the main climatic driver of treeline elevation in boreal and tropical regions, whereas precipitation drives CLMT position in temperate zones. Temporally, we show that 70% of CLMT have moved upward, with a mean shift rate of 1.2 m/year over the first decade of the 21st century. CLMT are shifting fastest in the tropics (mean of 3.1 m/year), but with greater variability. Our work provides a new mountain treeline database that isolates climate impacts from other anthropogenic pressures, and has important implications for biodiversity, natural resources, and ecosystem adaptation in a changing climate.more » « less
- 
            Climate change is expected to increase woody vegetation abundance in the Arctic, yet the magnitude, spatial pattern and pathways of change remain uncertain. We compared historical orthophotos photos (1952 and 1979) with high-resolution satellite imagery (2015) to examine six decades of change in abundance of white spruce (Picea glauca) and tall shrubs (Salix spp., Alnus spp.) near the Agashashok River in northwest Alaska. We established ~3000 random points within our ~5500 hectare (ha) study area for classification into nine cover types. To examine physiographic controls on tree abundance, we fit multinomial log-linear models with predictors derived from a digital elevation model and with arctic tundra, alpine tundra and “tree” as levels of a categorical response variable. Between 1952 and 2015, points classified as arctic and alpine tundra decreased by 31% and 15%, respectively. Meanwhile, tall shrubs increased by 86%, trees mixed with tall shrubs increased by 385% and forest increased by 84%. Tundra with tall shrubs rarely transitioned to forest. The best multinomial model explained 71% of variation in cover and included elevation, slope and an interaction between slope and “northness”. Treeline was defined as the elevation where the probability of tree presence equaled that of tundra. Mean treeline elevation in 2015 was 202 meters (m), corresponding with a June-August mean air temperature greater than 11° Celsius (C), which is greater than 4°C warmer than the 6-7°C isotherm associated with global treeline elevations. Our results show dramatic increases in the abundance of trees and tall shrubs, question the universality of air temperature as a predictor of treeline elevation and suggest two mutually exclusive pathways of vegetation change, because tundra that gained tall shrubs rarely transitioned to forest. Conversion of tundra to tall shrubs and forest has important and potentially contrasting implications for carbon cycling, surface energy exchange and wildlife habitat in the Arctic.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
